
Using Bulk Built-In Current Sensors and Recomputing Techniques
to Mitigate Transient Faults in Microprocessors

Franco Leite1, Tiago Balen1, Marcos Hervé2, Marcelo Lubaszewski1, Gilson Wirth1

 1Departamento de Engenharia Elétrica, 2Instituto de Informática

 Universidade Federal do Rio Grande do Sul - Porto Alegre – RS, Brazil

ABSTRACT

This work presents the application of a recomputing-
based correction technique to mitigate radiation effects on
integrated processors. The recomputing process is associated to
Bulk Built-In Current Sensors (BICS) capable of detecting
variations in the bulk current due to a particle strike in the circuit
silicon area. An 8051 microprocessor is considered as case study.
This work focuses on the mitigation of Single Event Transient
(SET) faults affecting the execution of the microcontroller
instructions. VHDL descriptions of the microcontroller and of the
bulk BICS are simulated and results show that recomputing the
instruction, when the BICS indicates a particle strike, is an
efficient way to prevent processing errors. The resulting SET-
resistant microcontroller presents low area and performance
overheads.

1. INTRODUCTION

The incidence of cosmic radiation in integrated circuits

can affect the correct functioning of the system in which it is
inserted. This radiation is originated mainly from solar activity and
can be divided in electrical charged particles, like protons and
heavy ions, and electromagnetic radiation [1].

With the microelectronics technology scaling, circuits are
more vulnerable to this effect, since transistors dimensions shrink
as the technology evolves and, consequently, lower amounts of
charge are needed to change the state of a transistor. Although this
effect is more likely to occur at high altitudes (in avionic and space
applications, for example), it can also affect modern circuits
operating at the sea level [2].

Microcontrollers and microprocessors are widely used in
several applications, including avionics and space ones, in which
the incidence of radiation or electrical particles is more intense. For
this reason, it is desirable that the microprocessors employed in
such applications embed some kind of fault tolerance mechanism,
to avoid computing errors, potentially caused by Single Event
Upset (SEU) and Single Event Transient (SET).
 Previous works have described the use of ECC (Error
Correction Codes) to protect microprocessors memory against
Single Event Upset (SEU) [2]. This work focuses on the mitigation
of SET faults affecting the execution of microprocessor
instructions. The technique proposed in this paper consists in a
recomputing-based fault tolerance mechanism, associated to the
use of Bulk Built-In Current Sensors (BICS) [3]. The bulk current
sensor provides a flag signal to the control part of the
microprocessor, which indicates a possible strike of an electrical
particle. This signal is used to start the recomputing process in a
way that a possible corruption in the instruction being executed by
the microprocessor (possibly caused by a SET) is corrected.

In order to validate the technique, an 8051
microcontroller is considered as case study. For this purpose, a

VHDL description of such device is used and RTL
simulations are performed.

The rest of this work is organized as follows: in
section 2 some related works are presented. Section 3
describes the proposed recomputing scheme, while section 4
shows the modifications implemented at the 8051 control
part. Results are shown in section 5 and section 6 concludes
the work.

2. RELATED WORK

Single Event Upset (SEU) and Single Event

Transient (SET), as well as their effects on digital circuits,
have been widely studied from more than a decade and
several techniques to implement fault tolerant digital circuits
have been devised, for example [2, 4]. All techniques are
based on redundancy, in different levels. The redundancy can
be classified in terms of area (spatial) or time (temporal).
Next, some related works that propose the use of redundancy
schemes are discussed. Previous works that proposed and
used bulk BICS are also discussed.

2.1 Area Redundancy

 A well-known hardware fault tolerance technique is
the Triple Modular Redundancy (TMR) [4]. This technique
consists in triplicating the circuit logic and using a majority
voter. Considering a single fault hypothesis, if a fault affects
one of the replicas of the logic (changing the value of the
signal delivered to the voter) the other two voter inputs are
correct and their values are passed to the voter output. The
weak points of this technique are the high area overhead (at
least 200%, considering the replicated logic) and the
vulnerability to multiple faults in different paths [4].
Additionally, faults can also occur in the voter, hence, to
guarantee the reliability of TMR schemes the voter must be
fault tolerant as well.
 Other levels of redundancy can also be employed in
fault tolerant schemes. By duplicating the circuit a single fault
can be detected but not corrected. Quadruplicating the circuit
or by using even higher degrees of redundancy can also
mitigate multiple faults [4].
 Several techniques to achieve protection in RAM-
type memories have been studied in last years since,
contrarily to Flash and ROM memories, RAM memories are
sensitive to SEE (Single Event Effects) [4]. Some techniques
to protect RAM memories are based on correction codes, as
Hamming code, for example [2]. By using such schemes, BIT
inversions in the memory content can be detected and
corrected. The use of correction codes also implies in area
overhead since the number of BITs of the memory elements
is increased.

2.2 Time Redundancy

 Recomputing techniques are mainly based on time
redundancy, although some degree of area redundancy is often
required. In such schemes, a given operation is recomputed
multiple times, and the results of these computations are compared
in order to detect faults. Recomputing can be performed at operator
level (low-level recomputing) or at algorithm level [4].
 Partial recomputing can also be used to reduce the time
overhead. In this technique some instructions are recomputed while
others are not, this way the program execution delay is reduced [4].
Also in [4] the dynamic operator allocation is proposed, i.e., the
order of mathematical operator during the recomputing phase is
different from the order employed in the first time computing. This
avoids that permanent faults remain undetected, since such faults
may affect the final result in different ways if one compares the
computing to the recomputing process.

2.3 The Bulk Built-In Current Sensor

 The use of Bulk Built-In Current Sensors (bulk-BICs) to
detect transient errors was proposed in [3]. Its functioning is based
on the detection of bulk current, caused by the strike of ionizing
particles. In this work the design of the sensor itself is not
considered, since it is well described in previous works [3].

The bulk-BICS analyzes the current that appears at the
bulk terminal. During normal operation, the current in the bulk is
approximately zero. Only the leakage current flows through the
biased junction, which is still very low compared to the current
generated by energetic particles. So, when an energetic particle
generates a current in the bulk, it is very clear to the bulk-BICS
that a SET has happened [3]. The bulk-BICS generates thus an
asynchronous signal indicating that a current peak in the IC Bulk
was detected.

Once a SET is detected, the bulk-BICS output that
signals the occurrence of a SET is activated, and remains in this
state until the reset input is activated. The reset signal must be
activated by the recomputing system.

3. MITIGATING TRANSIENTS IN

MICROPROCESSORS: 8051 CASE STUDY

This work proposes the use of bulk-BICS to detect the
incidence of radiation in integrated microprocessors. An 8051
microcontroller is considered as case study. If a transient current
pulse is detected, the microcontroller must repeat the reading and
execution of the instruction being processed, in order to avoid an
erroneous computing.

By the time of the current pulse detection, the data cannot
be stored in any memory element, since it may be corrupted.
Therefore, in order to re-execute the last instruction, the program
counter (PC) must be stopped or decremented. For this reason, the
microcontroller control part must be modified. After the re-
execution, the microcontroller sends a reset signal to the BICS, and
if no more current activity is signaled by the sensors, the
microcontroller continues its normal operation.

In this work a VHDL description of an 8051
microcontroller is used. The considered description [5] presents
some enhancements if compared to the 8051 original architecture
and control procedures. In classical 8051 devices the instruction
execution takes 12 or 24 clock cycles. However, in the architecture

described in [5] the execution of the instructions is performed
in less clock cycles, as showed below:

• Instructions like INC_A, that comprise only the
FETCH state take one clock cycle.

• Instructions like ADD, that have the FETCH and
EXEC1 states need two clock cycles.

• Instructions like LJMP, that comprise also the
EXEC2 state take 3 clock cycles.

• Instructions like INC_DPTR and XCH_A_D, which
have the EXEC3 state, need four clock cycles to
accomplish its execution.

In this work the VHDL description presented in [5]
is modified in order to add the fault tolerance functionalities
to the 8051 core. Descriptions and simulations are performed
by using the ModelSim tool.

Besides the 8051, a simplified description of the
bulk-BICS is also used to perform the simulation. In this
description a process that generates a transient pulse is
inserted, in order to simulate the detection of radiation
incidence. Figure 1 shows the VHDL BICS description.

Figure 1: VHDL description of the bulk- BICS

The process p_tb_bics modifies the signal
s_particula and can simulate the radiation incidence at any
time and with any duration. When the signal s_particula goes
high the bulk-BICS logic generates a logic “1” at the signal
radiacao, indicating that a transient pulse at the bulk was
detected. This signal is only reset if the signal s_particula
returns to zero and if the signal resetbics2 is high. In this
work the signal resetbics2 is provided by the microcontroller
and indicates that the recomputing process is finished.

4. MODIFICATIONS IN THE 8051 CONTROL
PART

The recomputing process consists in interrupting the PC

if a transient pulse is detected. Then, the PC must be decremented
in some positions in order to re-execute the instruction that was
under execution at the time of the transient pulse detection.

To comply with the proposed fault tolerance scheme the
control part of the microcontroller must be modified. These
modifications are inserted in the FSM (Finite State Machine) and
also into the memory and registers control logic. In the VHDL
description used in this work the FSM and memory controls are
divided in two distinct files.

The signal s_pc_inc_en is responsible for enabling the
PC increment. If this signal is “0” then the PC is not incremented,
otherwise, if this signal is “1” then the PC can be incremented in
the next clock rising-edge. This signal is crucial to the recomputing
process.

Concerning the instructions with more than one
execution cycle the radiation incidence may occur between the
FETCH and EXEC1 states. In this case the recomputing can be
performed in two different ways: simply stopping the PC or
decrementing it, in such a way that the entire instruction is re-
processed. Considering the 2-cycle instructions, the former option
is preferred in this implementation because in the first state
(FETCH) there are no control signals to corrupt. If some signal is
corrupted in the EXEC1 state it is automatically recomputed, since
this is the last state of the instruction execution.

For the 3-cycle instructions, if the SET occurs between
the EXEC1 and EXEC2 states, it is possible that the control signals
of EXEC1 are corrupted. In this particular case it is mandatory to
decrement the PC, in order to return to the EXEC1 state. An
example is shown in Figure 2 considering the modified long jump
instruction with a 16 BIT address as reference.

Figure 2: Modification in a 3-cycle instruction: the example of a

long jump

A necessary modification to implement is the possibility
of decrementing the PC, since this functionality is not present at

the 8051 original architecture. This is implemented by
changing the microcontroller memory control part.

Besides the architecture modifications detailed
above, the memory writing logic is also modified. This is
necessary to avoid the storing of a potentially corrupted data
if a SET is detected.

Finally, another modification at the memory control
part is the insertion of the signal resetbics2 responsible for
resetting the current sensor after the recomputing process
finishes. This signal is synchronous with the next state logic
of the control part. It is necessary to guarantee that the re-
execution process has finished before the transition to the
next state.

5. EXPERIMENTAL RESULTS

Several simulations were performed considering the

modified architecture of the 8051 microcontroller. Results
showed that every time a transient is detected by the bulk-
BICS the recomputing process is started. The program
counter is stopped or decremented if necessary and the
instruction is recomputed.

Figures 3 and 4 show a simulation in which a
simple program is loaded into the 8051 microcontroller. This
program executes five accumulator increments, sums 20 to
the ACC and returns to the third line. These Figures focus on
the “long jump” instruction. Figure 3 shows the simulation
considering no SET occurrence, while Figure 4 shows the
simulation considering a transient fault detection. One can see
in Figure 4 that after the detection of the transient fault
(during the EXEC2 state) the control FSM returns to the
EXEC1 state. Additionally, the PC is decremented (14 to 13)
and the bulk BICS is reset. This scheme assures that a
detected transient fault will not affect the program normal
execution.

Simulations concerning the area overhead were also
performed. For this purpose the Synopsis tool “Design
Vision” was used. The synthesis report showed that the
synthesized original architecture comprises 6645 logic cells.
The modified description with the fault tolerance
functionalities takes 6662 logic cells, representing an
overhead of 0.26%. It is important to point out that this
overhead is calculated considering only the control part
modifications.

If the memory protection (by using ECC) is also
considered, the area overhead will be higher. In [2] the area
overhead achieved by using Hamming code to prevent SEU
faults in an 8051 core was 46%. Additionally, previous
works that studied the use of bulk BICS showed that for logic
circuits with relatively high complexity (which is the case of
the 8051 core) the area overhead due to the implementation of
bulk BICS is about 10% to 15% [3]. Therefore, the overall
overhead achieved in a fully protected 8051 core, when using
this approach, can be estimated as 60% to 70%.

The timing reports resulting from the synthesis of
the VHDL descriptions showed that the original and the
modified circuits have a maximum operation frequency of 44
MHz and 40.2MHz respectively. This represents that the
modified circuit is 8.5% slower than the original
microcontroller. As reported in [2], if the ECC memory
protection is also considered, a careful VHDL description of

the fault-tolerance mechanisms can lead to no performance impact
in the final microcontroller architecture. Additionally, previous

works on the use of bulk-BICS have also shown that they
have negligible impact on the circuit timing performance [3].

Figure 3: Test program execution without transient fault

Figure 4: Test program execution simulating a transient fault during the “EXEC2” state of a “long jump” instruction

6. CONCLUSIONS

This work focuses the protection of integrated

microprocessors in respect to the execution of instructions. The
protection of the memory elements can be made by using error
correction codes, as proposed in previous works.

The detection of the transient pulse is achieved by
means of integrated bulk built-in current sensors (bulk-BICS).
When the microcontroller receives the BICS indication, a
recomputing process is started in order to avoid the processing of
potentially corrupted data.

An 8051 microcontroller is considered as case study.
The main modifications are made on the program counter control
(allowing it to be decremented) and also in the memory writing
control logic, in order to avoid the storing of corrupted data.

Simulation results show that radiation effects affecting
the execution of microcontroller instructions can be eliminated
with little processing time. Synthesis and simulations also show
that low area and performance overheads are imposed by such
scheme, which indicates the feasibility of the technique.
Additionally, gathering previous works results with the ones
presented in this paper, it is possible to achieve a full SET and
SEU protected 8051 with significant reduction in the area
overhead if compared to TMR solutions.

7. REFERENCES

[1] Ziegler, James F. Terrestrial Cosmic Rays. IBM Research
Division, Thomas J. Watson Research Center, P. 0. Box 218,
Yorlcown Heights, New York 10598. Volume 40 nº 1, Janeiro
de 1996.

[2] Kastensmidt, Fernanda. L.; Cota, Érika ; Rezgui, Sana;
Carro, Luigi; Velazco, Raoul; Lubaszewski, Marcelo; Reis,
Ricardo. Synthesis of an 8051-Like Micro-Controller Tolerant to
Transient Faults. Journal of Electronic Testing: Theory and
Applications 17, 149-161, 2001.

[3] Neto, Egas H.; Ribeiro, Ivandro; Vieira, Michele; Wirth,
Gilson; Kastensmidt, Fernanda L.; Carro, Luigi. Using Built-in
Sensors to Cope with Long Duration Transient Faults in Future
Technologies.

[4] Wu, Kaijie; Karri, Ramesh. Algorithm Level Recomputing
Using Allocation Diversity: A Register Transfer Level Approach
to Time Redundancy-Based Concurrent Error Detection. IEEE
Transactions On Computer-Aided Design of Integrated Circuits
and Systems, Vol. 21, No. 9, September 2002, P.1077-1087.

[5] Oregano Systems – Design and Consulting web page.
http://www.oregano.at/ip/8051.htm, accessed in march, 2007.

Particle Strike
Bulk-BICS Detection

Reset bulk-BICS

Recomputing

