
Aquarius II – A platform for dynamic reconfigurable
systems prototyping

Abstract

The programmable logic devices,
FPGAs (Field Programmable Gate Arrays)
have been used for a long time, especially as
tools for digital circuits prototyping. However,
this reality has changed and new applications
are possible, since the computational power of
these devices increased, cost decreased and
their capacity of run-time reconfiguration
(dynamic reconfiguration) were implemented.

However, despite all advantages
presented, this technology has not been
largely used on computational applications
mainly because of the complexity of these
systems development.

This article presents Aquarius II, a
platform able to efficiently manage the
resources provided by FPGAs, through an
operational system for reconfigurable systems
prototyping.

1. Introduction

The technology of programmable logic
devices has evolved considerably and
presented several advantages over
conventional architectures: performance gains
of around 10 to 100 times, compared with
conventional CPUs; reduced consumption of
energy, important feature both in embedded
applications, as in computers clusters;
significant decrease in the price of these
devices; possibility of dynamically
reconfiguration [1][2][3].

However, despite the many
advantages offered, this technology is not yet
widely used to perform computing due to the
complexity of the development process of
these systems [4][5].

Even with this difficulty, the FPGAs are
becoming an extremely promising technology
in cost-benefit ratio, especially in applications
that require high performance computing.
Several companies have begun to provide

supercomputers with FPGAs incorporated into
their systems [3][6][7][8].

In this context, this paper presents a
platform based on an operating system
capable of managing the computing resources
offered by FPGAs in a transparent manner to
the developer in order to alleviate the problem
presented. This platform aims to allow the
prototyping of reconfigurable systems that
exploit the parallelism provided by the FPGA
architecture.

2. Aquarius II Platform

The first version of the Aquarius
platform was developed at the Center for
Informatics of the Federal University of
Pernambuco and includes the functions of
total and partial dynamic reconfiguration of a
Xilinx Virtex-II FPGA [10] through a control
platform. However, the Aquarius did not allow
any kind of communication between the
control platform and the IPCore configured in
the FPGA. This limitation prevented that more
complex data processing applications were
implemented.

The second version, presented in this
article, solved this limitation, through an
architecture that enables communication
between the control platform and the memory
of the reconfigurable core through resources
offered by an operating system.

2.1. Architecture Overview

The Aquarius II platform is a hybrid
platform composed of an Altera development
board [12], with a Stratix II FPGA [11], which is
the control platform, and a Xilinx development
board [13], called reconfigurable platform,
which is equipped with a Virtex-II FPGA II [10]
which represents the co-processor or the
system’s reconfigurable device.

In the control platform are mapped: the
soft-core processor, NIOS II; the IPSelectMap
core (already implemented in the first version
of Aquarius [9])), responsible for total and

partial dynamic reconfiguration of the Virtex-II
FPGA; and IPCommCore, implemented in
Aquarius II. This one is responsible for
communication between the control platform
and the core's memory in the reconfigurable
platform. All control platform IPs communicate
through the Avalon bus [14]. Also are
members of this platform, the operating
system uCLinux [15], ported to Altera NIOS II
processor [16], and the device drivers for
IPSelectMap and IPCommCore. The Figure 1
presents the platform architecture.

Figure 1 - Aquarius II Architecture Overview

2.2. Hardware Support

2.2.1. IPCommCore

The IPCommCore is the core that
effectively makes the communication between
the control platform and the reconfigurable
platform. It allows both data and commands to
be sent between the two platforms.

For the IPCommCore communicate
with the core mapped in the co-processor
device, was defined a standard interface for
communication with the reconfigurable cores
(Figure 2).

Figure 2 - Interfaces between Avalon Bus,

IPCommCore and The Reconfigurable Core

Interface

2.2.2. Standard Communication Interface
The communication interface is the

entry point of data coming from the control
platform to the reconfigurable cores memory
of the application. This interface receives data
in its entry FIFO and distributes in the internal
memory architecture of the reconfigurable
core. The signals of this interface are shown in
the Figure 2.

2.3. Software Support

2.3.1. uCLinux

Four main factors influenced the choice
of uCLinux for the platform: it is free and open
source which allows complete freedom in
carrying out changes; use of prior knowledge
of the Linux operating system in the
implementation of device drivers [17]; has a
large community of users who provide a
constant support, and finally has a port to
NIOS II processor used in Aquarius II platform
[16].

2.3.2. Device Driver

For the uClinux access the device, it
was necessary the implementation of a device
driver responsible for its control. On Linux all
devices are seen as a file of the file system
and an operating system API provides a
number of functions for access these files.
These API functions have been redefined
inside the device driver to allow access to the
communication resources provided by
IPCommCore.

3. Experimental results

To validate the proposed architecture,
was developed an application of 8 bits integer
numbers multiplication, from a reconfigurable
core that implements the multiplication.

The core, in fact, is composed, in
addition to the multiplication core, a memory
architecture and an interface that defines how
access is performed as mentioned previously
in Section 2.2.2.

The experiments are carried out by
repeated integer numbers multiplications in
hardware. The processing time of these
multiplications are presented in Table 1.

Table 1 - Mutiplication Processing Time

Number of

Multiplications

Processing Time

1 7,76 ms

2 10,64 ms

4 17,10 ms

8 25,9 ms

The experiments presented here were
used to validate the entire flow of design and
implementation on the Aquarius II platform.
Due to existing bottlenecks in the operating
system and the communication between the
platforms, we need to develop cores that
intensively explore the parallelism in FPGAs.
Cores with parallel architectures are already

being implemented by the research group and
will be prototyped in Aquarius II.

4. Conclusions

In this article was presented Aquarius
II, a hybrid platform for dynamically
reconfigurable systems prototyping, controlled
by the uCLinux operating system. The
platform enables algorithms that require
acceleration in their implementation use an
FPGA as an embedded co-processor. The
Aquarius II also implements total and partial
reconfiguration of the FPGA. This feature can
be exploited in several future applications.

The uCLinux operating system, used in
the platform creates an abstraction of how the
tasks are running, providing to developers
transparency in the use of algorithms
implemented in hardware. However, this
requires the prior development of a hardware
components library that can be used by the
developer, similar to the reality present in
software libraries.

However, for these libraries provide a
significant performance, it is necessary to
exploit the parallelism present in the
algorithms. The research group is now
studying these algorithms.

5. References

[1] W. Rosenstiel, “Reconfigurable systems –
a new era in digital system design has just
begun”, University of Tübingen WSI – Dep.
Computer Engineering, 2001.

[2] Patrick Schaumont, Ingrid Verbauwhede,
Kurt Keutzer, and Majid Sarrafzadeh, “A
quick safari through the reconfiguration
jungle” in DAC ’01: Proceedings of the
38th conference on Design automation,
New York, NY, USA, 2001, pp. 172–177,
ACM Press.

[3] Ander Dellson, Göran Sandberg, and
Stefan Möhl, “Turning FPGAs Into
Supercomputers: Debunking the Myths
About FPGA-based Software
Acceleration,” in CUG Proceedings, 2006.

[4] W.H. Mangione-Smith, B. Hutchings, D.
Andrews, A. DeHon, C. Ebeling, R.
Hartenstein, O. Mencer, J. Morris, K.

Palem, V.K. Prasanna, and H.A.E.
Spaanenburg, “Seeking solutions in
configurable computing,” Computer, vol.
30, pp. 38–43, December 1997.

[5] S. Hauck and A. Agarwal, “Software
technologies for reconfigurable systems,”
Submited to Proceedings of the IEEE,
1997.

[6] “FPGA Acceleration in HPC: A Case Study
in Financial Analytics”, Hosted in
<http://www.xtremedatainc.com/pdf/FPGA
_Acceleration_in_HPC.pdf>. Access in
07/26/2007.

[7] “Site of CLC-Bio”, www.clcbio.com.
[8] Volodymyr V. Kindratenko, Robert J.

Brunner, and Adam D. Myers, “Mitrion-C
Application Development on SGI Altix
350/RC100,” in Proceedings of IEEE
Symposium on Field-Programmable
Custom Computing Machines (FCCM‘07),
Napa, California, April 2006.

[9] Jordana L. Seixas, “Aquarius - uma
plataforma para desenvolvimento de
sistemas digitais dinamicamente
reconfiguráveis,” M.S. thesis, Federal
University of Pernambuco (UFPE),
Informatic Center, February 2007.

[10] Xilinx, Virtex II Platform FPGA User
Guide, User Guide UG002 (V1.5),
December 2002.

[11] “Stratix II - Altera”,
http://www.altera.com/products/devices/str
atix2/st2-index.jsp.

[12] Altera, Nios Development Board
Reference Manual, Stratix II Edition, 2005.

[13] Xilinx, Virtex II V2MB1000 -
Development Board User’s Guide (v.3.0),
Memec Design, December 2002.

[14] Altera, “Avalon Bus”,
www.altera.com/literature/manual/mnl_ava
lon_spec.pdf.

[15] “uCLinux”, www.uclinux.org.
[16] Microtronix, “uCLinux NIOS Port”,

www.microtronix.com.
[17] Daniel P. (Daniel Pierre) Bovet and

Marco Cesati, Understanding the Linux
kernel, O’Reilly, third edition, November
2005.

