
MEMORY ASPECTS OF DUAL CORE PROCESSOR DESIGN

Thiago Nunes Coelho Cardoso, Celina Gomes do Val,
José Augusto Nacif, Antônio Otávio Fernandes, Claudionor Nunes Coelho Jr.

Computer Science Department, Universidade Federal de Minas Gerais
{thiagon,lina,jnacif,otavio,coelho}@dcc.ufmg.br

ABSTRACT

Nowadays multi-core processors are being widely used
to improve performance. In this paper a dual core MIPS32
is designed and implemented in Verilog. MIPS32 is a
MIPS Technologies architecture used extensively in embed-
ded solutions. A quick overview of the single core archi-
tecture is given. The design of the dual core architecture
is then detailed focusing in the main challenges: memory
access and cache coherence. In order to solve this prob-
lems a bus arbiter for simultaneous memory access and
the write-invalidate cache coherence protocol are imple-
mented. Simulation waveforms of processor behavior in
important events are discussed. The synthesized processor
fits Spartan 3E XC3S1200E using 8.67% of system gates.

1. INTRODUCTION

For decades the computer industry had basically used
two techniques in order to improve the processors perfor-
mance: The first is reducing the transistor size and the sec-
ond is increasing its switching frequency. Shrinking tran-
sistors made possible not only increase the number of tran-
sistors in a chip, but also reach higher transistor switching
frequency. Unfortunately this scaling brings an exponential
growth in leakage power, which density began approach-
ing the active power density. The problem is that this is a
rigid limit since leakage power increase is the basic work-
ing principle of an MOS transistor [1]. While increasing
processor frequency is getting harder, the ability of packing
more transistors in each chip is still growing.

On the architectural layer, instruction level parallelism
has also shown its limitations over the years, as at the pro-
gram level, we have not seen recently greater performance
improvements at the expense of large transistor counts. Due
to this issues, modern processors are taking advantage of
parallel architectures as can be seen in IBM Cell, a proces-
sor with 8 cores [2], in Intel Core 2 Quad [3] and AMD
Phenom X4 Quad-Core, both with 4 complete execution
cores [4].

Multi-core processors have the advantage to parallel pro-
cess the same data set but this brings shared memory com-
plications, since memory usually can only be accessed by a
single core each time. Caches come as an optimization to

reduce the number of memory access, the drawback is the
cache coherence problem that is further explained.

In this paper a dual-core processor is designed and im-
plemented focusing on this memory and caches aspects. It
is structured as follows: Section 2 gives a MIPS32 quick
overview; Section 3 presents the cache coherence and mem-
ory access problems and the architecture of the dual core
MIPS; Section 4 discusses simulation and synthesis results;
Section 5 presents conclusion and future work.

2. SINGLE CORE ARCHITECTURE

MIPS32 is a 32 bit RISC architecture widely used in em-
bedded solutions such as Cisco routers, some SGI comput-
ers and video-games [5]. In this paper, the implemented
processor is MIPS32 based with most relevant features like
5 depth pipeline, instruction and data caches and exception
handling [6].

The processor is divided in the following main modules.

Bus: Responsible for connecting the processor caches to
the main memory. Asserts that the memory will have
only one access at a time.

Caches: Stores some requested memory data to take ad-
vantage of temporal and spatial location. Processor
caches are described more detailed in sub-section 2.1.

Control: Set the necessary flags in order to execute the in-
struction correctly.

IF,ID,EX,MEM,WB: Pipeline stages, each module has
the correspondent stage logic. IF fetches the next in-
struction, ID decodes it and set the necessary flags
with control, EX is responsible for execution (ALU),
MEM takes care of memory accesses and WB write the
information to the registers.

IE Handler: Interruption and Exception handler, takes the
proper action when an exception or interrupt is trig-
gered. This action go from software routines to hard-
ware interventions as resetting the processor.

2.1. Caches

The caches implemented in the processor are write-
through non-allocate caches. When a store instruction is



Figure 1. CPU Block Diagram

executed, the data is written in the main memory and if the
address is in cache its value is also updated.

Caches and memory were implemented in Verilog for
simulation, for synthesis they are removed and external
Static RAM is used for the caches and Dynamic RAM is
used for the main memory.

3. DUAL CORE ARCHITECTURE

The single core MIPS32 can be adapted to be used in a
dual core processor by taking especial care of the memory
access and the cache coherence between the processors.

Both cores access the same main memory. This scheme
bring some complications like sharing the memory access
and maintaining coherence between processors caches [7].

3.1. Shared Memory Bus

The implemented processor is a centralized shared-
memory multiprocessor. That is, all cores access the same
main memory.

More than one core may need to access the memory at
the same time but it can only answer to one query at once.
So it is necessary to have a bus to control this simultaneous
access.

Figure 2 presents the processor memory architecture.
In case of simultaneous access the bus is responsible for

selecting one core to have the priority. This core can be se-
lected by its id (the core with the smallest id has the higher
priority) but this approach can lead to starvation of the other
core. As an example if core 0 executes only load instruc-
tions and every one of them is responsible for a cache miss,
if the core 1 needed to read data from memory, including
instructions it would be locked forever.

A way to avoid this problem is to select the core in a
pseudo-aleatory way. This can be done if the bus each clock
cycle gives the priority to a different core, as in real appli-
cations memory access occurs in aleatory time, the priority
will be given in an aleatory fashion.

If a processor is reading or writing, a flag is sent to the
other processor making it wait until the bus is free.

Figure 2. Processor memory architecture

3.2. Cache Coherence

In multi-processor design, a single cache bus is usually
the system bottleneck. Reducing the use of bus is the key to
achieve better performance. Better performance can also be
reached if all processors have their own private cache [8].

With more than one core having its own cache, the same
data can be stored in different places. One value that is
changed by one cache should be changed in all other caches
or there should be a mechanism to avoid wrong data use.
This difficulty is known as the cache coherence problem.

The system must be coherent. A coherent system is the
one where every read of memory data return its more recent
value. In this paper this problem is a little simpler since
the implemented processor has write-through caches (data
is written in memory as soon as it is uploaded in cache)
making the main memory always hold the correct value.

The problem is not completely solved because both
cores can have the same address in their caches, if one mod-
ification is made by one core, the other one should be aware
of it or should have its value updated.

Small-scale multiprocessors usually adopt hardware so-
lutions for ensuring cache coherence. This solution is the
cache coherence protocol. There are two types of protocols:
Directory based and Snooping [9]. Directory based proto-
cols stores the sharing status of a physical memory block
in only one place, used for a larger number of processors.
The Snooping protocol is the one used in this paper. In this
protocol every caches snoops the bus to check if it has an
invalid or old value.

If the Snooping protocol update values in the neces-
sary caches when a value change is made it is said to be
a write update or write broadcast protocol. The other type
of snooping protocol is the write invalidate that is the one
implemented for this paper.

The write invalidate protocol is the one that in every
write to the memory invalidates the duplicates stored in
other caches. If the core with the invalidated address try
to read it, a cache miss will happen.

The Snooping protocol in this paper is implemented
through the bus that connects all caches. All caches snoops
this bus and invalidate broadcasted addresses. In this way



Figure 3. MIPS32 dual core normal execution

every cache is reported about data changes.

4. RESULTS

This section presents the results obtained by simulation
and synthesis.

4.1. Simulation

Figure 3 is a waveform of the processor executing nor-
mally. At 70ns the first processor (CPU0) starts executing
but the other one (CPU1) is still stalled. This happens due
to the cache compulsory miss (the first time the data is read,
in this case instructions). CPU1 then waits for the bus and
at 136ns it starts executing concurrently to CPU0.

The test presented in figures 4 and 5 can summarize the
dual core behavior of the bus and caches.

Figure 4 shows a moment after a cache miss in CPU0
(miss_BUS0=1), this indicates that the bus is used then
to read data from memory. Data is being read when
CPU1 executes an operation that leads to a memory ac-
cess, being necessary to read the memory but the bus is
already in use making it necessary to wait for its release
(waitDados_CPU1=1).

Figure 4. CPU1 tries to read during a CPU0
cache miss

Figure 5 highlights the moment when the bus is re-
leased and the instruction goes to the next pipeline stage
(regInstrucao_IF2ID=AC630000) in a way that it
can continue working normally.

4.2. Synthesis

The project was synthesized using the Xilinx ISE Web-
Pack 9.2.04i [10] to Spartan3E XC3S1200E. Spartan3E is
a series of low cost FPGAs. XC3S1200E FPGA provides
1.200.000 system gates.

Figure 5. Bus release

Logic Utilization Used % Total
Number of Slice Flip-Flops 3,766 21%
Number of 4 Input LUTs 8,740 50%
Number of occupied Slices 5,720 65%
Total Number of 4 input LUTs 8,982 51%
Total equivalent gate count 104,072 8.67%

Table 1. Synthesis results

Table 1 presents the FPGA resources used.
Spartan 3 slices are composed of two Look-up Tables

(LUT) function generators and two storage elements, along
with additional logic. If one component of the slice is
used, the whole slice is considered used, that justify the
difference between slice utilization (in %) from system gate
count (8.67%).

5. CONCLUSION AND FUTURE WORK

In this paper we designed and implemented a dual core
MIPS32 processor. We discussed in more detail the simul-
taneous memory access and the snooping write-invalidate
cache coherence protocol.

The discussed protocol is simple to implement and takes
only a small part (898) of total system gates, proving to be a
good candidate for simple dual core implementations. The
main drawback of write-invalidate protocol is the fact that it
doesn’t scale for a large number of processors in a way that
it can become a bottleneck [8, 11]. This happens because
more cores will try to simultaneously access the memory in
a way that processors will be in busy-wait until the bus is
freed more frequently.

For future work the implemented protocol can be tested
to check the increase in wait time caused by the growth in
the number of cores. Other protocols can also be imple-
mented, synthesized and compared to find a good trade-off
in FPGA utilization and efficiency.



6. ACKNOWLEDGEMENTS

This work is supported by brazilian research agencies
CNPq (grant PNM #141201/2005-3) and FAPEMIG (grant
CEX-1485/06).

7. REFERENCES

[1] C. Johnson and J. Welser, “Future processors: flexi-
ble and modular,” in CODES+ISSS ’05: Proceedings
of the 3rd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis,
(New York, NY, USA), pp. 4–6, ACM, 2005.

[2] IBM Corp., “The Cell Architecture.” Available at:
http://domino.research.ibm.com/comm/research.nsf/pa
ges/r.arch.innovation.html, 2005.

[3] Intel Corporation, “Product Brief: Intel Core 2 Quad.”
Available at: http://www.intel.com/portugues/
products/processor/core2quad/index.htm, 2007.

[4] Advanced Micro Devices, Inc., “Key Architec-
tural Features of AMD Phenom X4 Quad-Core
Processors.” Available at: http://vip.amd.com/us-
en/Processors/ProductInformation/0,,30 118 15331 15
332%5E15334,00.html, 2008.

[5] Mips Technologies Inc., “Mips Technologies Web-
site.” Available at: http://www.mips.com, 2008.

[6] MIPS Technologies, Inc., “MIPS32 Architecture For
Programmers Volume II: The MIPS32 Instruction
Set,” 2005.

[7] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture: A Quantitative Approach. 4 ed., 2007.

[8] J. Archibald and J.-L. Baer, “Cache coherence pro-
tocols: evaluation using a multiprocessor simulation
model,” ACM Trans. Comput. Syst., vol. 4, no. 4,
pp. 273–298, 1986.

[9] P. Stenström, “A Survey of Cache Coherence
Schemes for Multiprocessors,” Computer, vol. 23,
no. 6, pp. 12–24, 1990.

[10] Xilinx, Inc., “Xilinx ISE WebPack.” Available at:
http://www.xilinx.com/ise/logic design prod/webpack
.htm, 2008.

[11] T. Terasawa, S. Ogura, K. Inoue, and H. Amano, “A
cache coherency protocol for multiprocessor chip,”
Wafer Scale Integration, 1995. Proceedings., Seventh
Annual IEEE International Conference on, pp. 238–
247, Jan 1995.


