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ABSTRACT 

 

Circuit layout generation is one of the last steps in the 

physical synthesis workflow. In this step, the circuit logic 

description is translated into a physical representation in 

terms of planar geometric shapes corresponding to the 

patterns of metal, oxide, or semiconductor layers that 

make up the components of the final integrated circuit. As 

a result, the final circuit area is closely related to the 

quality of the generated layout. Matching transistor gates 

is an essential task for achieving an efficient layout 

implementation. To deal with this issue, this paper 

proposes a tree-based algorithm as a solution for (i) 

finding Eulerian paths inside a transistor network 

description and (ii) reaching the maximal gate matching 

between the pull-up and pull-down logic planes. 

 

1. INTRODUCTION 

 

Nowadays, one of the most established design flows 

for digital microelectronics design is the standard-cell 

approach. This flow consists in using pre-built logic cells 

to automatically compose the digital circuit. Synthesis 

tool maps the target circuit according to a given logic cell 

library, based on costs concerning area, signal 

propagation delay and power consumption [1,2]. Usually, 

cell libraries are composed of a few tens of logic cells, 

due to the engineering effort to include a new one. These 

logic cells have been previously characterized and tested, 

and all information about their behavior is described in a 

database which, in turn, is used during the technology 

mapping procedure. 

Some researchers have observed that large cell 

libraries could lead to a better circuit implementation [3]. 

However, the number of potential logic function increases 

exponentially with the number of inputs. Therefore, it is 

not possible to characterize and implement every logic 

function possible in order to compose a given library. The 

processes of characterization and layout generation are 

extremely computing demand, making the possibility of 

having large cell libraries unfeasible [4]. 

An alternative to technology mapping is the concept 

of library-free circuit design. In this approach, the 

technology mapping tool does not use a cell library when 

performing the mapping procedure. All logic cells needed 

to compose the circuit are delivered by an automated cell 

generator. The main disadvantage of this approach is the 

lack of cell characterization data. All of the mapping 

procedure is performed employing non-characterized 

information. Generally, transistor count and transistor 

stack are used as cost by library-free technology mapping 

tools [1,5,6]. Consequently, more realistic information 

regarding layout area cannot be obtained. 

When regarding layout, it is important to utilize small 

logic cells to guarantee better implementations of digital 

circuits. In order to achieve such a goal, it is desirable 

that the transistors composing the logic planes of a given 

logic cell can be aligned. Such a situation would eliminate 

the need for unnecessary internal connections between the 

transistor gates, possibly minimizing cell dimensions. 

The purpose of this work is to present a solution to 

achieve networks with maximal matching between 

transistor gates at a symbolic layout (topological level). 

The main motivation is having, in the future, an 

automated workflow capable of being used by digital 

circuit designers who wish to obtain area results for 

different logic cell implementations [7,8,9] without 

having to generate their layout. Furthermore, this 

technique could be useful in a library-free approach, 

which would use the estimated layout area as a more 

accurate cost to perform circuit mapping. 

The remainder of this paper is organized as follows. 

Section 2 describes the algorithm for searching Eulerian 

paths. Section 3 offers a solution for finding gate matches 

between logic planes. Some results are given in Section 4. 

Finally, Section 5 presents conclusions and future works. 

 

2. SEARCHING EULERIAN PATHS 

 

In graph theory, Eulerian paths are paths that visit 

each edge in a graph exactly once. They were first 

discussed by Leonhard Euler while solving the famous 

problem of the Seven Bridges of Königsberg in 1736 

[10,11]. Graphs containing such paths are called 

traversable. A graph is traversable when it contains zero 

or two vertices of odd degree [12]. Fleury’s algorithm 

[13] is widely used for searching Eulerian paths in 

traversable graphs. In short, the algorithm involves 

starting from one of the two odd vertices and traversing 

the graph, crossing all edges only once and finally 

arriving at the other odd vertex. If there are no odd 

vertices, any vertex can be used as a starting point. In 

modern microelectronics, this concept is very important, 

since a network of transistors can be represented as a 



multigraph where Eulerian paths may be used to define 

the positioning of transistors in a layout implementation. 
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(b) 

 

Figure 1 – (a) PMOS transistor network and (b) NMOS 

transistor network showing possible Eulerian paths 

 

When a graph contains more than two vertices of odd 

degree, dummy edges may be inserted between them, 

making their degrees even. If enough dummy edges are 

inserted, any connected graph can be made traversable. 

Fig. 1b illustrates the insertion of a dummy transistor (XQ) 

in a NMOS transistor network containing four nodes of 

odd degree. Note that the dummy transistor can be 

inserted between any pair of odd nodes.  

Given a transistor network containing ‘n’ nodes of odd 

degree (n > 0), the number of dummy transistors required 

to make it traversable (d) can be obtained from the 

equation d = (n – 2)/2. For the example illustrated in Fig. 

1b, only one dummy edge is necessary. 

A given logic plane in a disjoint transistor network 

may contain several Eulerian paths. In order to find all 

possible paths, the following steps are applied: 

1. Each logic plane in the transistor network is 

converted into a multigraph representation. 

2. The number of dummy edges to be inserted in the 

graph is determined using the equation described 

above. 

3. Dummy edges are inserted between all possible 

pairs of odd vertices. 

4. The multigraph is then traversed, starting at each 

of the odd vertices (or all the vertices, if there are 

none). The number of dummy edges used in a 

path is limited to the amount obtained in step 2. 

5. All Eulerian paths found are stored in a tree-like 

structure to be analyzed by the gate matching 

algorithm. The tree nodes represent the gates of 

transistors in the network, and paths between the 

root and the leaves represent Eulerian paths. Fig. 

2 shows partial path trees for each of the logic 

planes illustrated in Fig. 1. 

 

3. GATE MATCHING 

 

The gate matching process consists in finding a pair of 

Eulerian paths – one for the NMOS plane and one for the 

PMOS plane of the same transistor network – containing 

the same sequence of transistor controlling signals. It is 

important because aligning gates reduces the complexity 

of internal connections between the NMOS and PMOS 

planes. In this context, a good match could benefit the 

routing procedure, which is one of the most critical steps 

when generating a cell layout implementation. In 

addition, the layout area requirements could be 

minimized, since there is no need for extra rows to 

connect the crossing polysilicon gates. This leads to a 

smaller layout implementation, and avoids the use of an 

extra layer of metal in order to connect unaligned gates. 

Fig. 3 illustrates two possible symbolic layout solutions 

(aligned and unaligned) for the cell shown in Fig. 1. 
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Figure 2 – Partial tree for the cell in Fig. 1, before (a, b) 

and after (c) the gate matching algorithm 

 

To achieve gate matching, the following algorithm is 

proposed: 

• Two trees obtained as described in Section 2 are 

simultaneously traversed in a recursive manner, 

starting at their roots. 



• Each node in a tree is compared to its counterpart 

in the other tree. If a given node does not exist in 

one of the trees, it is removed, along with its child 

nodes. 

• At the end of the algorithm, only corresponding 

nodes remain. These nodes represent matching 

gates in a pair of Eulerian paths. 

Fig. 2c illustrates the partial tree for the cell described 

in Fig. 1 after the gate matching algorithm has concluded. 

Note that only one tree is shown, since the two resulting 

trees are identical. 
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Figure 3 – Two possible symbolic layouts for the cell in 

Fig. 1, showing matched (a) and mismatched gates (b). 

  

4. RESULTS 

 

The algorithms proposed in this paper were 

implemented in the Java programming language. For the 

purpose of demonstrating the relevance of matching 

gates, a hypothetical 4-input logic function was evaluated. 

The function was implemented in the NCSP logic style 

[7], resulting in a logic cell comprised of twenty 

transistors (ten transistors in each plane). The algorithms 

were then applied to the cell, resulting in a new version 

with aligned gates. A commercial tool [14] was used to 

generate symbolic layouts and perform the routing step 

for both versions of the cell. Fig. 4 shows the outputs 

generated by the tool, illustrating the impact of using the 

techniques presented here. 

As can be seen, gate matching simplifies the routing 

of internal connections in the logic cell. Shorter metal and 

polysilicon lines are used in the aligned solution, since the 

gates in opposite planes are physically closer to each 

other. Although it was not analyzed in this work, signal 

propagation delay and power consumption behavior could 

take advantage of the aligned version due to the lower 

resistance and capacitance present in the circuit. 

 

5. CONCLUSIONS AND FUTURE WORKS 

 

A solution to achieve networks with maximal 

matching between transistor gates was proposed. The 

algorithms can be applied to any logic style that utilizes 

disjoint planes. In addition, they can handle transistor 

network planes containing different amounts of 

transistors, not being limited to standard CMOS. 

Future works will investigate other physical 

characteristics of transistor networks that could lead to a 

better layout implementation, taking into account the 

number of contacts and number of dummy transistors 

inserted, among other constraints. These research topics 

will provide knowledge for the future development of an 

automated tool with the ability of estimating cell layout 

area. 
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Figure 4 – Symbolic layouts: (a) unaligned solution, (b) aligned solution.
 


