
A TREE-BASED TRANSISTOR GATE MATCHING SOLUTION

FOR EFFICIENT LAYOUT IMPLEMENTATION

¹Diogo C. da Silva, ¹Fábio R. Pereira, ¹Leomar S. da Rosa Jr., ²André I. Reis, ¹Renato P. Ribas

¹Instituto de Informática – UFRGS, Porto Alegre, Brazil

²Nangate Inc., Sunnyvale, CA, USA

{dcsilva, frpereira, leomarjr, rpribas}@inf.ufrgs.br, are@nangate.com

ABSTRACT

Circuit layout generation is one of the last steps in the

physical synthesis workflow. In this step, the circuit logic

description is translated into a physical representation in

terms of planar geometric shapes corresponding to the

patterns of metal, oxide, or semiconductor layers that

make up the components of the final integrated circuit. As

a result, the final circuit area is closely related to the

quality of the generated layout. Matching transistor gates

is an essential task for achieving an efficient layout

implementation. To deal with this issue, this paper

proposes a tree-based algorithm as a solution for (i)

finding Eulerian paths inside a transistor network

description and (ii) reaching the maximal gate matching

between the pull-up and pull-down logic planes.

1. INTRODUCTION

Nowadays, one of the most established design flows

for digital microelectronics design is the standard-cell

approach. This flow consists in using pre-built logic cells

to automatically compose the digital circuit. Synthesis

tool maps the target circuit according to a given logic cell

library, based on costs concerning area, signal

propagation delay and power consumption [1,2]. Usually,

cell libraries are composed of a few tens of logic cells,

due to the engineering effort to include a new one. These

logic cells have been previously characterized and tested,

and all information about their behavior is described in a

database which, in turn, is used during the technology

mapping procedure.

Some researchers have observed that large cell

libraries could lead to a better circuit implementation [3].

However, the number of potential logic function increases

exponentially with the number of inputs. Therefore, it is

not possible to characterize and implement every logic

function possible in order to compose a given library. The

processes of characterization and layout generation are

extremely computing demand, making the possibility of

having large cell libraries unfeasible [4].

An alternative to technology mapping is the concept

of library-free circuit design. In this approach, the

technology mapping tool does not use a cell library when

performing the mapping procedure. All logic cells needed

to compose the circuit are delivered by an automated cell

generator. The main disadvantage of this approach is the

lack of cell characterization data. All of the mapping

procedure is performed employing non-characterized

information. Generally, transistor count and transistor

stack are used as cost by library-free technology mapping

tools [1,5,6]. Consequently, more realistic information

regarding layout area cannot be obtained.

When regarding layout, it is important to utilize small

logic cells to guarantee better implementations of digital

circuits. In order to achieve such a goal, it is desirable

that the transistors composing the logic planes of a given

logic cell can be aligned. Such a situation would eliminate

the need for unnecessary internal connections between the

transistor gates, possibly minimizing cell dimensions.

The purpose of this work is to present a solution to

achieve networks with maximal matching between

transistor gates at a symbolic layout (topological level).

The main motivation is having, in the future, an

automated workflow capable of being used by digital

circuit designers who wish to obtain area results for

different logic cell implementations [7,8,9] without

having to generate their layout. Furthermore, this

technique could be useful in a library-free approach,

which would use the estimated layout area as a more

accurate cost to perform circuit mapping.

The remainder of this paper is organized as follows.

Section 2 describes the algorithm for searching Eulerian

paths. Section 3 offers a solution for finding gate matches

between logic planes. Some results are given in Section 4.

Finally, Section 5 presents conclusions and future works.

2. SEARCHING EULERIAN PATHS

In graph theory, Eulerian paths are paths that visit

each edge in a graph exactly once. They were first

discussed by Leonhard Euler while solving the famous

problem of the Seven Bridges of Königsberg in 1736

[10,11]. Graphs containing such paths are called

traversable. A graph is traversable when it contains zero

or two vertices of odd degree [12]. Fleury’s algorithm

[13] is widely used for searching Eulerian paths in

traversable graphs. In short, the algorithm involves

starting from one of the two odd vertices and traversing

the graph, crossing all edges only once and finally

arriving at the other odd vertex. If there are no odd

vertices, any vertex can be used as a starting point. In

modern microelectronics, this concept is very important,

since a network of transistors can be represented as a

multigraph where Eulerian paths may be used to define

the positioning of transistors in a layout implementation.

(a)

(b)

Figure 1 – (a) PMOS transistor network and (b) NMOS

transistor network showing possible Eulerian paths

When a graph contains more than two vertices of odd

degree, dummy edges may be inserted between them,

making their degrees even. If enough dummy edges are

inserted, any connected graph can be made traversable.

Fig. 1b illustrates the insertion of a dummy transistor (XQ)

in a NMOS transistor network containing four nodes of

odd degree. Note that the dummy transistor can be

inserted between any pair of odd nodes.

Given a transistor network containing ‘n’ nodes of odd

degree (n > 0), the number of dummy transistors required

to make it traversable (d) can be obtained from the

equation d = (n – 2)/2. For the example illustrated in Fig.

1b, only one dummy edge is necessary.

A given logic plane in a disjoint transistor network

may contain several Eulerian paths. In order to find all

possible paths, the following steps are applied:

1. Each logic plane in the transistor network is

converted into a multigraph representation.

2. The number of dummy edges to be inserted in the

graph is determined using the equation described

above.

3. Dummy edges are inserted between all possible

pairs of odd vertices.

4. The multigraph is then traversed, starting at each

of the odd vertices (or all the vertices, if there are

none). The number of dummy edges used in a

path is limited to the amount obtained in step 2.

5. All Eulerian paths found are stored in a tree-like

structure to be analyzed by the gate matching

algorithm. The tree nodes represent the gates of

transistors in the network, and paths between the

root and the leaves represent Eulerian paths. Fig.

2 shows partial path trees for each of the logic

planes illustrated in Fig. 1.

3. GATE MATCHING

The gate matching process consists in finding a pair of

Eulerian paths – one for the NMOS plane and one for the

PMOS plane of the same transistor network – containing

the same sequence of transistor controlling signals. It is

important because aligning gates reduces the complexity

of internal connections between the NMOS and PMOS

planes. In this context, a good match could benefit the

routing procedure, which is one of the most critical steps

when generating a cell layout implementation. In

addition, the layout area requirements could be

minimized, since there is no need for extra rows to

connect the crossing polysilicon gates. This leads to a

smaller layout implementation, and avoids the use of an

extra layer of metal in order to connect unaligned gates.

Fig. 3 illustrates two possible symbolic layout solutions

(aligned and unaligned) for the cell shown in Fig. 1.

(a)

(b)

(c)

Figure 2 – Partial tree for the cell in Fig. 1, before (a, b)

and after (c) the gate matching algorithm

To achieve gate matching, the following algorithm is

proposed:

• Two trees obtained as described in Section 2 are

simultaneously traversed in a recursive manner,

starting at their roots.

• Each node in a tree is compared to its counterpart

in the other tree. If a given node does not exist in

one of the trees, it is removed, along with its child

nodes.

• At the end of the algorithm, only corresponding

nodes remain. These nodes represent matching

gates in a pair of Eulerian paths.

Fig. 2c illustrates the partial tree for the cell described

in Fig. 1 after the gate matching algorithm has concluded.

Note that only one tree is shown, since the two resulting

trees are identical.

(a)

(b)

Figure 3 – Two possible symbolic layouts for the cell in

Fig. 1, showing matched (a) and mismatched gates (b).

4. RESULTS

The algorithms proposed in this paper were

implemented in the Java programming language. For the

purpose of demonstrating the relevance of matching

gates, a hypothetical 4-input logic function was evaluated.

The function was implemented in the NCSP logic style

[7], resulting in a logic cell comprised of twenty

transistors (ten transistors in each plane). The algorithms

were then applied to the cell, resulting in a new version

with aligned gates. A commercial tool [14] was used to

generate symbolic layouts and perform the routing step

for both versions of the cell. Fig. 4 shows the outputs

generated by the tool, illustrating the impact of using the

techniques presented here.

As can be seen, gate matching simplifies the routing

of internal connections in the logic cell. Shorter metal and

polysilicon lines are used in the aligned solution, since the

gates in opposite planes are physically closer to each

other. Although it was not analyzed in this work, signal

propagation delay and power consumption behavior could

take advantage of the aligned version due to the lower

resistance and capacitance present in the circuit.

5. CONCLUSIONS AND FUTURE WORKS

A solution to achieve networks with maximal

matching between transistor gates was proposed. The

algorithms can be applied to any logic style that utilizes

disjoint planes. In addition, they can handle transistor

network planes containing different amounts of

transistors, not being limited to standard CMOS.

Future works will investigate other physical

characteristics of transistor networks that could lead to a

better layout implementation, taking into account the

number of contacts and number of dummy transistors

inserted, among other constraints. These research topics

will provide knowledge for the future development of an

automated tool with the ability of estimating cell layout

area.

6. REFERENCES

[1] Marques, F.; Rosa, L.; Ribas, R.; Sapatnekar, S.; Reis,

A. DAG Based Library-Free Technology Mapping.

Great Lakes Symposium on VLSI 2007

(GLSVLSI’07), pp. 293 – 298.

[2] Mischenko, A. et al. Technology mapping with

Boolean matching, supergates and choices. ERL

Technical Report, EECS Dept., UC Berkeley, March

2005.

[3] Vujkovic, M. et al. Efficient Timing Closure Without

Timing Driven Placement and Routing. Design

Automation Conference 2004 (DAC’04), pp. 268 –

273.

[4] Sechen, C.; Guan, B. Large standard cell libraries and

their impact on layout area and circuit performance.

International Conference on Computer Design 1996

(ICCD’96), pp. 378 – 383.

[5] Stok, L.; Iyer, M.; Sullivan, A. Wavefront technology

mapping. Design, Automation and Test in Europe

1999 (DATE’99), pp. 531 – 536.

[6] Correia, V.; Reis, A. Advanced technology mapping

for standard-cell generators. Symposium on Integrated

Circuits and Systems Design 2004 (SBCCI’04), pp.

254 – 259.

[7] Schneider, F.R.; Ribas, R.P.; Sapatnekar, S.S.; REIS,

A.I. Exact Lower Bound for the Number of Switches

in Series to Implement a Combinational Logic Cell.

International Conference on Computer Design 2005

(ICCD’05), pp. 357 – 362.

[8] da Rosa Jr. L.S.; Marques, F.S.; Schneider, F.; Ribas,

R.P.; Reis, A.I. A Comparative Study of CMOS Gates

with Minimum Transistor Stacks. Symposium on

Integrated Circuits and Systems Design 2007

(SBCCI’07), pp. 93 – 98.

[9] Kagaris, D.; Haniotakis, T. A Methodology for

Transistor-Efficient Supergate Design. IEEE

Transactions on VLSI Systems, vol.15, n.4, pp. 488 –

492, April 2007.

[10] Euler, L. Solutio problematis ad geometriam situs

pertinentis. Commentarii Academiae Scientiarum

Petropolitanae, vol.8, pp. 128 – 140, 1741.

[11] Even, S. Graph Algorithms. First Edition. Londres:

Pitman Publishing Limited, 1979.

[12] Drozdek, A. Estrutura de Dados e Algoritmos em

C++. First Edition. São Paulo: Thomson Learning,

2002.

[13] Uehara, T.; vanCleemput, W. M. Optimal Layout of

CMOS Functional Arrays. IEEE Transactions on

Computers, vol.c-30, n.5, pp. 305 – 312, May 1981.

[14] Nangate Library Creator™. In: www.nangate.com ,

June 2007.

(a)

(b)

Figure 4 – Symbolic layouts: (a) unaligned solution, (b) aligned solution.

