
INCREMENTAL HARDWARE DEVELOPMENT FROM MODULAR MIXED C-VHDL
SIMULATION

¹Márlon A. Lorencetti, ²Wagston T. Staehler, ¹Altamiro A. Susin

¹Universidade Federal do Rio Grande do Sul

²Universidade Luterana do Brasil

ABSTRACT

Complex digital systems development needs large
amounts of HDL code. Frequent compilations and
simulations are time and CPU consuming activities.
This paper presents a design flow that starts with a
validated modular C-description and allows incremental
HDL coding. The C-description is initially structured
such that each module will become a hardware module,
in a one to one correspondence, and then coded in C
and validated using application specification or
benchmark. One module at a time is coded in HDL, and
validated by means of test vectors that are generated
and analyzed by the system functions. These functions
use the same variables to interface either the C or
VHDL descriptions. The technique has been used to
develop a H.264/AVC video decoder that uses
thousands of test vectors.

1. INTRODUCTION

The presented method decreases the time used to
descript and validate the hardware module, using a
software model. While working as a model for the
hardware description, the software is able to extract test
vectors from the input data that will be used in the
hardware validation.

This work was developed in the context of the
Brazilian Digital Television System, the SBTVD
(Sistema Brasileiro de Televisão Digital) [1]. The
H.264/AVC (MPEG-4 part 10) standard [2] was chosen
for the video coding in this new system for its high
quality and compression rates, currently considered the
“state-of-art” in video coding, achieving several
improvements over previous standards. A consortium
of brazilian universities is developing a video decoder
that is compliant with this standard. Because software
based versions of this decoder hardly achieve enough
performance to work with high resolutions at real time,
a hardware decoder [3] has been developed and
prototyped in FPGA.

The decoding process is extremely modular,
allowing different developers to implement different
functionalities separetely, since the interface between
neighbour modules is respected.

In order to help the development process, an equally
modular software model was created and validated.

Then, the software is used to generate input data and
expected results to each module.

This paper presents the design flow used to
implement a 4x4 intra frame prediction module in
VHDL for a H.264 video decoder, using a previously
developed model software [4].

2. H.264/AVC AND INTRA FRAME PREDICTION

The intent of the H.264/AVC project was to create a
new standard capable of offering good video quality
with lower bit rates than previous standards (MPEG-2,
for example). Besides, the new standard had to provide
flexibility to be used in different applications.

This standard is block-based, where an image is
divided in blocks of 16x16 pixels, called macroblocks.
The algorithms of encoding and decoding are applied
separately for luma and chroma components, using the
YCbCr color space. The data flow of this standard can
be seen in the block diagram of the Fig. 1.

In order to compress the video data, H.264 brings
some prediction methods to eliminate the redundancy
that exists in the image data [6]. The temporal
redundancy is explored with inter frame prediction
methods, where a block is predicted as a similar blocks
in previously decoded frames (from the past and/or
future of the sequence) with an associated motion
vector shifting its position. Another kind of prediction
is the intra frame prediction, which uses the spatial
similarities between neighbor blocks in the same frame.
This kind of prediction is an innovation in video coding
brought by H.264 standard.

Intra frame prediction is applied in 4x4, 8x8 or
16x16 pixels blocks with specific prediction directions.
For the luma component of a macroblock the prediction
can be executed in 4x4 blocks (nine modes available) or
in the whole 16x16 block (four modes available). The
8x8 intra frame prediction is used in the sub-sampled
chroma components of the macroblock and has four
possible directions. The possible prediction directions
for 4x4 luma blocks are shown in Fig. 2.

For the 4x4 intra prediction there is an algorithm to
generate the expected prediction mode, because even
the direction of intra prediction does not change so
much in neighbor regions. To decide whether the
predicted mode will be used or not, one bit is read from
the bitstream. If the bit is ‘1’, the predicted mode is
used.

Fig. 1 – H.264/AVC block diagram.

Fig. 2 - 4x4 Intra prediction modes.

Else, three additional bits are read to indicate the actual
prediction mode.

3. SOFTWARE MODELING AND SIMULATION

The software model used in this work was already
implemented in a previous work (more details in [4]
and [5]). This software is used as a model instead of JM
Reference Software [7] because the last one has a very
difficult code, making its use as model software really
tricky. The implemented software has a modular code
that eased the extraction of sample data to support the
hardware design.

Tab. 1 - Inputs and expected results.
Inputs Expected Results

prediction bit: 1
Residual Luma 4x4
(128,160):
-3 0 6 9
16 18 21 23
8 6 3 1
-21 -24 -30 -33

predicted mode 4x4: 1
mode 4x4: 1
Predicted Luma 4x4
(128,160):
106 106 106 106
60 60 60 60
92 92 92 92
140 140 140 140

prediction bit: 0
3 bits: 5
Residual Luma 4x4
(256,240):
18 7 1 6
5 1 7 19
-1 -3 11 25
6 1 7 18

predicted mode 4x4: 1
mode 4x4: 6
Predicted Luma 4x4
(256,240):
145 134 123 120
166 155 145 134
158 162 166 155
159 158 158 162

This software is capable of decoding bit streams
coded with JM Reference Software containing only
frames with intra prediction and CAVLC entropy
coding. The implemented blocks are: CAVLC entropy
decoder, intra prediction, inverse quantization, inverse
transform and deblocking filter.

In order to have input data to test the hardware,
some parameters are extracted from the software. For
the example given on this paper (4x4 intra frame
prediction) these parameters are: the bit indicating the
use of 4x4 predicted intra mode, the other three bits to
generate the new 4x4 prediction mode (when
applicable), and all the residual data needed to
reconstruct the pixels used to predict the next blocks.

Also, the expected results are generated in software.
These results are: the predicted mode for 4x4 blocks,
the used mode for 4x4 blocks, and the prediction
results. An example of input data and expected results
is shown on Tab. 1.

4. DESIGN METHODOLOGY

The H.264 decoder has several operating blocks, so the
hardware development group is likely to adopt an
incremental synthesis process. The problem about
implementing the whole standard at once becomes even
bigger when the matter is to debug the entire hardware
in a HDL level.

In order to help the development of a hardware
description a structured software was used, containing
well defined interfaces linking the different modules.
This software works as a reference model due to its
more simple coding style, providing a better
understanding of the algorithms used in the decoder.
This software was implemented using the equations and
descriptions of the set of recommendations of ITU-T
for H.264 video decoder. This implementation was
validated through output comparison with JM
Reference Software, which is fully compliant with
those recommendations.

After the software implementation, is possible to
write a specification for the hardware module, because
the software shows clearly the required variables and
condition tests needed to implement the circuit.
Besides, the creation of the software includes the
creation of proposed test situations, which will be used
to validate the hardware. The input data stream is

extracted from the model software and stored into a file
to be used to test the hardware. Also, the software
generates the expected results for the corresponding
input stream for that block.

Then, when the hardware implementation is done,
the stored input data is adapted to fit the hardware input
constraints and the block is simulated in the ModelSim
Xilinx environment. The output of this simulation is
stored and compared with its correspondent software
generated expected results. After a set of tests
containing images with different scenes, the hardware
behavior is considered validated.

5. HARDWARE IMPLEMENTATION RESULTS

This work will use the implementation of a 4x4 intra

predictor for a video decoder as an example of the
presented methodology.

5.1. Luma 4x4 Intra Prediction – Architecture

An initial idea to implement this module is to create

a different circuit to each prediction mode. This way, all
the possible predictions are executed, but just the
selected one passes to the output through a multiplexer.

Besides, the circuit could be completely
parallelized, so a full 4x4 block prediction would take
just one clock cycle to be completed. However, this
implementation occupies a large area of the FPGA,
leading to an ineffective way to perform the task,
despite the high performance achieved.

Taking a better look at the equations used in the
model software, or even at the ITU-T
recommendations, is noticeable that for all intra
prediction modes (except for the DC mode) an equation
in the format of the equation (1) is used for all samples.
So, the proposed implementation architecture explores
this fact defining a structure to calculate this linear
combination in a hardware block [8]. For the
implementation of luma 4x4 prediction the proposed
architecture uses a main processing element (PE) to
implement the equation (1):

Pi = (n1 + c1*n2 + n3 +c2)>>c3 (1)

The n values are neighbor pixels to this block, and

the c values are constants. Depending on the chosen
mode the values of n1, n2, n3, c1, c2 and c3 are
switched. This equation is used to calculate every
available mode, except the DC one. The operational
part of the proposed architecture is shown in Fig. 3.
The DC mode is the arithmetic mean of the available
neighbors. Besides, the DC value must be calculated in
just one clock cycle. To do so, the architecture uses two
PE units, selecting the proper constants when the DC
mode is chosen. Then a multiplexer selects between the
mean of the outputs of those PEs, the output of just one
of them (if the block does not have all the neighbors),

Fig. 3 - 4x4 Luma Prediction Architecture.

or the default 128 value (if there is no neighbors at all).
In order to reach the needed throughput to be able to
deal with high definition resolutions for television, the
system has to generate 93.3 millions of samples per
second (1920*1080 pixels *30 frames per second *1.5
luma and chroma samples). The proposed architecture
processes four samples per cycle (using four PEs), so it
can achieve HDTV rates running at 23.328MHz. This
partially parallel implementation provides a balance of
performance and occupied area of the FPGA [7].

5.2. Luma 4x4 Intra Prediction – Behavioral
Validation

The input data set extracted from the software is

adapted and introduced in the ModelSim VHDL
simulation tool. The output signals of the simulation are
captured into a file. Then, a simple software application
compares theses signals with the expected results
extracted from the software. In this implementation all
the signals matched the expected software results in the
many tests performed. Thus, the VHDL implementation
of the intra prediction is now considered validated.

5.3. Luma 4x4 Intra Prediction – Synthesis Results

The hardware development group prototypes its
modules in FPGA. The board used is a Digilent XUP
V2P, with a Xilinx Virtex-II Pro XCV2VP30 FPGA.
After synthesizing for this device, the module presented
the results shown on Tab. 2:

Tab. 2 - Synthesis results.

FPGA Area (LUTs) 2323 of 27392 (8.48%)
FPGA Area (Flip-Flops) 219 of 27392 (0.80%)
Clock 336 MHz
Throughput 4 samples/cycle

As discussed before, the circuit had to work at

23.328MHz to reach the needed throughput for HDTV,
but based on the synthesis results the module operates
with a large time margin, and will not limit the speed of
a complete decoder system.

6. CONCLUSIONS

This paper presented the design flow used to

implement a 4x4 intra predictor module for an H.264
video decoder. A software version of the decoder was
used as a reference model for the hardware
development, providing a better understanding of the
interfaces and methods used to predict the current
block. Before the hardware implementation, this
software was used to create a specification for the
hardware design, since it is more compact and intuitive
than the JM Reference Software or even the set of ITU-
T recommendations, which has not a much
straightforward algorithm description. Besides, after the
hardware implementation, the same software is able to
provide data vectors to validate the circuit in a
behavioral simulation. The outputs of both software and
hardware were compared in order to detect errors or
confirm the accuracy of the hardware module.

As future works, more features could be included in
the software, like the functions required to decode inter
predicted frames. Also, more functions to acquire test
data should be included, in order to support the debug
and validation for all H.264 decoder modules. Another
possible use for the software model is the validation of
the whole decoder system after integration, using
basically the same test strategy.

7. REFERENCES

[1] “Televisão Digital Terrestre – Codificação de vídeo, áudio
e multiplexação”, ABNT, Rio de Janeiro-RJ, 2007.

[2] Video Coding Experts Group, “ITU-T Recommendation
H.264 (03/05): Advanced video coding for generic
audiovisual services”, International Telecommunication
Union, 2005.

[3] L.V. Agostini et al, “Design and FPGA Prototyping of a
H.264/AVC Main Profile Decoder for HDTV”, IEEE
International Workshop on Rapid System Prototyping,
Proceedings, Porto Alegre-RS, pp. 174-180, 2007.

[4] M.A. Lorencetti, W.T. Staehler and A.A. Susin,
“Reference C Software H.264/AVC Decoder for Hardware
Debug and Validation”, XXIII South Symposium on
Microelectronics, SBC, Bento Gonçalves-RS, pp 127-130,
2008.

[5] M. Fiedler, “Implementation of a basis H.264/AVC
Decoder”, Seminar Paper, 2004.

[6] I.E.G. Richardson, “H.264 and MPEG-4 Video
Compression: Video Coding for the Next-generation
Multimedia”, John Wiley and Sons, England, 2003.

[7] “H.264 Reference Software”,
http://iphom.hhi.de/suehring/tml/, 2008.

[8] W.T. Staehler and A.A. Susin, “Real-Time 4x4 Intraframe
Prediction Architecture for an H.264 Decoder”, VI ITS, IEEE
International Telecommunications Symposium, Fortaleza-CE,
2006.

	INCREMENTAL HARDWARE DEVELOPMENT FROM MODULAR MIXED C-VHDL S
	ABSTRACT

