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ABSTRACT 

 

Transistor network optimization is of special interest 

for efficient digital circuit design. In this context, a graph-

based solution for dual-network generation is proposed. 

The algorithm is able to generate series-parallel and 

bridge topologies. Experimental results demonstrate 

significant CMOS gate design improvement in terms of 

the total number of transistors, when combining dual-

network generation presented here with BDD-based 

technique. 

 

1. INTRODUCTION 

 

CMOS design is currently the most used and well 

established logic style applied by the modern industry of 

microelectronics. This standard, also known as 

complementary series/parallel (denominated here as CSP) 

logic style, is an arrangement of series and parallel 

transistors in two separated logic planes: pull-up and pull-

down ones. Fig. 1 illustrates the CSP logic style. The 

major advantage of the CSP logic is low sensitivity to 

noise, good performance and low power consumption [1].  
 

 

Figure 1 – Standard CMOS logic style (‘CSP’). 
 

The transistor arrangement is built in a straightforward 

two step procedure. In the first step, a given logic 

function description, composed of AND and OR 

operators, is translated into an equivalent elements 

interconnection. To generate the pull-down NMOS plane, 

all AND operations are treated as series interconnections, 

while OR operations are treated as parallel associations. 

In the second step, the dual logic plane is obtained 

through a topologically complemented implementation, 

where all series interconnections in the first logic plane 

are converted to parallel interconnection in the other logic 

plane. The same process is done for parallel 

interconnections, resulting in series arrangements. 

Remembering that the CMOS style provides a negate 

logic function. Fig. 2a presents a transistor network from 

a CSP logic style for the equation f = !(a*d + a*c*e + 

b*e + b*c*d). It is possible to notice that the dual logic 

plane is obtained directly from a series/parallel 

complementary association. 
 

 

 

(a) 
 

(b) 
 

Figure 2 – Function f = !(a*d + a*c*e + b*e + b*c*d), 

(a) CSP logic style, (b) bridge-based arrangement. 

 

Recent works have investigated and demonstrated that 

different logic styles may deliver more efficient networks 

[2-4]. Some of these works show that circuit area, circuit 

delay, and circuit power consumption may be optimized if 

alternative logic styles are used instead of standard 

CMOS. In this context, some works explore the use of 

bridge transistor arrangements in order to minimize the 

transistor count in the circuits [5,6]. In such logic style, 

non-series parallel arrangements are done, introducing 

transistors that are neither in series nor in parallel with 

others. Fig. 2b illustrates a bridge-based implementation 

for the equation described before, where the transistors 

controlled by variable ‘c’ are the responsible for a non-

series/parallel arrangement. The drawback for generating 

this kind of network is that complementary series/parallel 



operations cannot be used to obtain the dual plane, since 

there are some transistors that are neither in series nor in 

parallel with others. For that, it is necessary a dual-graph 

approach in order to achieve the network construction [1].  

This paper presents a methodology to automatically 

generate dual logic planes for bridge-based arrangements. 

The graph theory is briefly explained and the proposed 

solution is presented to achieve two terminal dual 

networks. 

 

2. TRANSISTOR NETWORK TO MULTIGRAPH 

 

A transistor network description, i.e. Spice netlist, 

may be converted into a graph representation. In this 

work it is done because graph structures are easier to 

manipulate than Spice netlist textual descriptions. This 

way, all transistors are converted to edges, and the nodes 

of the network are converted to vertices. The Vdd/Gnd 

and Output nodes are kept as special vertices (this 

information is necessary in the proposed algorithm). In 

the graph theory point-of-view, the correct term for the 

graph obtained from this operation is multigraph. 

The term multigraph refers to a graph in which 

multiple edges between nodes are permitted. Some 

references require that multigraph possess no graph loops 

[7], while other ones explicitly allow them [8]. For the 

purpose of this work, the multigraph will not possess 

graph loops, because in transistor networks there is no 

transistor connecting the same node. This situation would 

be a short-circuit in the network. 

Another important concept to be understood is related 

to the graph planarity. A graph is planar if it can be drawn 

in a plane without graph edges crossing. This 

characteristic is required for the dual graph generation. 

Only planar graphs may deliver a dual graph [7].  

In the literature, some algorithms to generate dual 

graph from a simple graph are available, as presented in 

[7]. In this approach, the ‘exterior’ face is converted to a 

single vertex in the dual graph. However, for the 

electrical engineering purpose, the exterior face must be 

considered as two vertices. For the purpose of this work 

these vertices are called exterior vertices. This 

assumption is necessary since electrical networks are 

composed by two terminal nodes. Fig. 3a illustrates a 

transistor network, and Fig. 3b shows a planar multigraph 

obtained from this network and its two exterior vertices 

dual graph (dotted lines).  

In the case of generating a dual graph from a simple 

graph, all edges joining to the vertex V1* (as illustrated in 

Fig. 3b) should be redirected to vertex V2*. The vertex 

V1* would be suppressed. Apart from that, it is important 

to notice that a simple graph does not allow multiple 

edges between two same vertices, like the edges joining 

V1 and V3 in Fig. 3b. 

Since simple graph and multigraph are not sufficient 

to meet the requirements to generate a dual two terminal 

transistor network, this structure of multigraph with two 

exterior vertices is presented as an adequate solution. 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 3 – Transistor network (a), and equivalent 

multigraph (b) representation and its dual (doted lines). 

 

3. PROPOSED ALGORITHM 

 

The input of the method is a Spice netlist description. 

This description is translated into a multigraph 

representation in order to be manipulated. The algorithm 

to generate the dual graph is performed in three main 

steps: compression, dual graph generation, and 

decompression. 

 

3.1. Compression 

 

In the compression step, all multiple edges joining the 

same two vertices (parallel edges) are merged in single 

edges. In the same way, the edges connecting vertices 

with 2-degree (series edges) are merged in single edges. 

Notice that this merge operation causes the suppression of 

the 2-degree vertex. This procedure is only allowed if the 

vertex is not a special vertex (Vdd/Gnd and Output). It is 

done until no edge compressions are observed. This step 

is done to simplify the sequence of the algorithm. If the 

original transistor network is a series/parallel 

implementation, this compression will result in a graph 

with only one edge. It means that it is not necessary to use 

the next step to obtain the dual implementation, since the 

solution is trivial (as presented before, through 

series/parallel association). If the number of edges from 

the resulting compressed graph is different from one, it 

means the original transistor network is a non-

series/parallel implementation. So, the next step of this 

algorithm is applied. Fig. 4b illustrates the graph 

compression step over the input multigraph described in 

Fig. 4a. 
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Figure 4 – (a) Input multigraph, (b) resulting simple graph 

after compression, and (c) dual graph obtained by 

applying the proposed algorithm. 

 

3.2. Dual Graph Generation 

 

At this point of the algorithm, all parallel edges were 

suppressed through the compression step, resulting in a 

simple graph. The dual graph generation consists in 

following sub steps: 

• Cycle Detection and Faces Identification: a cycle is a 

closed walk in the graph, which is an alternating 

sequence of vertices and edges, beginning and ending 

at the same vertex. In this step, all cycles are 

detected. The regions defined by the cycles in a 

planar graph are referred as faces. The unbounded 

face is called exterior face [7]. In Fig. 4b the region 

defined by the vertices V1, V3 and V4 is a face, as 

well as the region defined by V2, V3 and V4 is 

another face. The ‘exterior’ face is the exterior region 

defined by V1, V3, V2 and V4. 

• Creating Exterior Vertices: two paths ([ab, c] and [f, 

gh]), between the special vertices (V1 and V2), 

traversing the original exterior face are identified. 

These two paths define the boundary where the two 

external vertices for the dual graph will be created. In 

the graph theory this idea of two ‘exterior’ faces is 

not described, but it is necessary because these 

special vertices in the dual graph will be translated to 

Vdd/Gnd and Output nodes in the dual transistor 

network.  

• Dual Creation: All faces in the graph that are not 

‘exterior’ faces will receive a vertex. For two faces 

having an edge ‘x’ in common, the corresponding 

vertices are joined by an edge ‘x*’ crossing only this 

edge ‘x’. This joining process is performed to all 

faces in the graph. The dual graph will be the 

collection of edges and vertices that were obtained 

after all this procedure. This is shown in Fig. 4c. 

 

3.3. Decompression 

 

In the decompression step, all compressed edges in 

the dual graph must be expanded. It is done performing 

the following rules: 

 

• All edges in the dual graph that were created from a 

parallel compression in the original graph will be 

expanded in a series way. This process will 

reintroduce 2-degree vertices in the graph. 

• All edges in the dual graph that were created from a 

series compression in the original graph will be 

expanded in a parallel way. This process will 

transform the simple graph in a multigraph again. 

 

Notice that the decompression is done using the 

compression information stored in the first step of the 

algorithm. This way, the correctness of the dual graph 

expansion is guaranteed. The dual transistor network is 

obtained by a simple mapping from the multigraph to a 

Spice netlist. 

 

4. RESULTS 

 

The proposed algorithm was implemented in Java 

language. To demonstrate the functionality of this 

algorithm, a Spice netlist for the function 

f=!(a*b*!e*f+a*b*h+a*c*e*g+a*!b*c*e+b*c*d*!e*f+b

*c*d*h+d*e*g+!b*d*e) was generated using the BDD-

based approach presented in [4], illustrated in Fig. 5a. 

The pull-down NMOS plane was used as reference to 

generate an alternative pull-up PMOS plane, according to 

the dual graph principle, described in this work. The 

result is observed in Fig. 5b. 

The total transistor count is clearly minimized, since it 

is possible to generate the dual-network from the input 

transistor network plane that contains the smallest number 

of elements. This obtained network is logically equivalent 



to the original network generated by [4]. In this case, a 

reduction of 26% in transistor count was verified.  
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(b) 
 

Figure 5 – Transistor network for the logic function 

f=!(a*b*!e*f+a*b*h+a*c*e*g+a*!b*c*e+b*c*d*!e*f+b

*c*d*h+d*e*g+!b*d*e): (a) generated by BDD [4], (b) 

obtained using the proposed method. 
 

It is important to notice that the solution proposed 

here does not generate transistor networks from an 

equation description, as it is done in state-of-the-art 

transistor networks generation methods. Instead, it uses a 

previously generated Spice netlist as input, and tries to 

achieve a smaller transistor count. For complementary 

series/parallel transistor networks the algorithm does not 

present any improvement, since the dual generation 

returns exactly the same networks. 

 

5. CONCLUSIONS 

 

A dual transistor network generation algorithm was 

presented. The algorithm is a graph-based solution that is 

able to generate dual networks for bridge-based 

arrangements. The results show the potential use of the 

algorithm, demonstrating that it could be used as a later 

optimization step to achieve efficient transistor networks. 

The elements count is minimized by exploring this 

approach, leading to logic cell implementation with small 

area overhead. 
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