
DESIGN AND TEST OF A DDR SDRAM INTERFACE FOR FPGA SYSTEMS

Alexsandro C. Bonatto, André B. Soares, Altamiro A. Susin
Dept. de Engenharia Elétrica, Lab. de Processamento de Sinais e Imagens

Universidade Federal do Rio Grande do Sul – UFRGS
90035-190, Av. Osvaldo Aranha 103, Porto Alegre, Brazil

Email: {bonatto,borin,susin}@eletro.ufrgs.br

Abstract

This paper deals with reusability issues in the devel-
opment of a double data rate (DDR) SDRAM controller
module for FPGA-based systems. The development of
integrated systems-on-a-chip (SoC) is based on the reuse
of modules, or intellectual properties (IP) cores. More-
over, the system design based on a hardware description
language (HDL) allows the developer to make rapid
prototyping by integrating modules into a FPGA device.
Nevertheless, DDR memory controllers not always can be
fully described using a generic reusable code language.
With our approach, it is possible to generate a highly re-
configurable DDR controller that minimizes the recoding
effort of the hardware developer.

1. INTRODUCTION

Systems-on-a-chip can integrate different hardware el-
ements as processors and communication modules over
the same chip. Each hardware element is a closed block
defined as an intellectual property (IP) module. The reuse
of IP modules in the construction of different SoCs is
a fast way to reach system integration. New generation
high-performance and high-density FPGAs become pro-
totyping devices suitable for verification of SoC designs.
However, only few megabytes of memory are available
inside FPGA devices and an external memory is needed
if the application handles large amounts of data.

In this scenario, double data rate synchronous RAM
(DDR SDRAM) has as main characteristics large ca-
pacity to store data, low cost and high bandwidth. An
external memory controller (EMC) module is used into
the SoC to interface with the DDR memory.

Memory devices, either used as single elements or as
DIMM (dual in-line memory module), have standardized
interfaces. Thus, the EMC design targets a reusable IP
module shaped to the system needs. At this point, the use
of a hardware description language (HDL) as Verilog or
VHDL adds some benefits to the design as it:
• Uses high-level system description allowing human

readable codes;
• Is a technology-independent system description that

can be reused with a minimum of recoding;
• Allows design verification by high-level simulation

before the gate-level implementation.

Figure 1. IP module design flow for FPGA.

However, as the HDL code was not originally intended
as an input to generate hardware, many language con-
structions are not supported by the synthesis software.
The synthesis tools use different language subsets to
translate the description code to logic elements. The
hardware designer must use coding strategies to create a
source code that can be synthesized. The understanding
of the synthesis tool process and the knowledge of the
FPGA features are important to design the hardware
module. Also, the hardware developer must to know the
placement and timing parameters to reach the system
specifications.

The IP module design flow can be structured in five
steps before its implementation and test in the develop-
ment board (Figure 1): 1) system requirements definition
and module technical specifications; 2) design concep-
tion, test bench and timing specifications; 3) HDL design-
entry description; 4) logic synthesis and; 5) physical
implementation. The design-entry is structured using the
language subsets for the synthesis tool, after the system
requirements and module technical specification step.
It can be structural (topologically-defined), instantiating
pre-defined blocks from vendor library models into the
code; or behavioral, describing the module functionality



in a high-level of abstraction. In the logic synthesis step,
the design-entry is traduced into hardware logic elements
by inference or using the vendor library models. The final
step before the system prototyping is the physical imple-
mentation. In this step, the components instantiated in the
code are mapped from the vendor library and the timing
constraints are used to implement the module. In parallel
with the design flow, each module development step is
accompanied by a stage of verification: the functional
simulation of the HDL code; the timing analysis of the
module logic synthesis and; the timing simulation of the
module physical implementation.

The DDR SDRAM controller uses architecture specific
primitives and macros that are instantiated in the HDL
code using the vendor library models. A synthesis tool
is not capable to translate these specific macros in the
design-entry by inference. Then, some recoding effort is
necessary when reusing the controller IP on a different
platform. These aspects characterize a firm-IP module,
which targets specific device architecture and has a higher
level of optimization. Firm cores are traditionally less
portable than soft cores, but have higher performance
and more efficient resources utilization because they are
optimally mapped, placed and routed.

In this paper it will be presented an architectural
description of the DDR memory controller for FPGA
implementation. Also, it will be presented the DDR
controller components that are technology-dependent and
the FPGA fabric solutions from Xilinx and Altera man-
ufacturers. At the end of the paper it will be reported the
implementation results on a Xilinx Virtex-2 Pro device
interfacing with a DIMM DDR SDRAM.

This paper is organized as follows: section 2 presents
an overview of the DDR memory and controller; section
3 shows the controller technology-dependent compo-
nents; section 4 presents the implementation and valida-
tion steps and in section 5 the conclusions are discussed.

2. DDR SDRAM CONTROLLER IP

In this section it will be introduced the main charac-
teristics of DDR memory and controller.

2.1. DDR SDRAM overview

These memories operate with differential clocks CK
and CKn, which provides source-synchronous data cap-
ture at twice the clock frequency. Data is registered either
in the rising edge of CK and CKn. The memory is
command activated starting a new operation after receive
a command from the controller.

Data words are stored in the DDR memory organized
in banks, indexed with row, column and bank addresses.
The Figure 2 illustrates the timing diagram for a RD
operation in DDR memory. DDR memories operate in
data burst transfers, transmitting or receiving 2, 4 or 8
data words in each memory access. To access data in a
read (RD) or write (WR) operation, the controller first
set the row address, this is called as row-address strobe
(RAS) command (Step #1). After, the memory controller

Figure 2. Timing diagram of reading data from DDR
memory with CAS latency 2 and burst length 4.

Figure 3. DDR controller block diagram.

set the column address, called as a column-address strobe
(CAS) command (Step #2). In the case of a RD operation,
data is available after the CAS Latency (CL) which can
be 2, 2.5 or 3 clock cycles (Step #3). The data words
D0:D3 are transmitted edge aligned with the strobe signal
DQS after the CAS latency. DQS is a bidirectional strobe
signal used to capture data DQ.

2.2. DDR controller architecture

The DDR controller contains the logic used to control
data accesses and the physical elements used to interface
with the external memory. The DDR controller design
objectives the creation of a configurable IP module,
to be used into different SoC designs, allowing the
configuration of: DQ data bus width and DQS strobes;
the burst length; the CAS latency; the number of clock
pairs, chip-select and clock-enable signals to memory.

The DDR controller architecture is structured in three
sub-blocks, as illustrates Figure 3:

Control module – controls the data access operations
to external memory translating the user commands and
addresses to the external memory. Also it controls the
write and read cycles and the data maintenance gener-
ating the auto-refresh command periodically. Is imple-
mented as a soft-IP module described in HDL;

Data-path module – data sent and received from DDR
memory are processed by this module. In transmission,
data are synchronized using the double data rate registers.
In reception, data are stored into internal FIFOs to and
synchronized to the controller internal clock. Is imple-
mented as a soft-IP module described in HDL;

I/O module – contains the I/O and 3-state buffers
located at the FPGA IOBs device and the double data
rate registers used to write and read data, commands and
to generate the clock signals to memory. It is a firm-IP
module described in HDL with pre-defined cell and I/O
location.



Figure 4. Circuit topology to capture the data read.

The FPGA must provide to the controller apart from
the system clock, a 90◦ shifted clock. This is done by
a clock manager module, as a phase-locked loop (PLL),
internally or externally to the FPGA.

2.3. Read data capture using DQS

The most challenging task in interfacing with DDR
memories is to capture read data. Data transmitted by
DDR memory are edge aligned with the strobe signal, as
showed in the Figure 2. The controller uses both strobe
signal transitions to capture data, rising and falling. The
strobe signal must be delayed 90◦ with respect to DQ
to be aligned with the center of data valid window. The
Figure 4 illustrates the circuit topology used to capture
the data read from DDR memory. A Delay Line is
inserted into the DQS path in order to shifting the strobe
signal by 90 degrees, as described in [1].

The DQS strobe timing pattern consists of a preamble,
toggling and postamble portion, as illustrated in Figure 2.
The preamble portion provides a timing window for
the receiving device to enable its data capture circuitry.
The Enable Logic used in data capture circuit showed
in Figure 4 avoids false triggers of the capture circuit.
Following the preamble, the strobes will toggle at the
same frequency as the clock signal for the duration of
the data burst.

In the next section, a comparison between the different
technologies used by Altera and Xilinx to implement
DDR controllers is presented.

3. TECHNOLOGY-DEPENDENT
ELEMENTS

The FPGAs from Xilinx and Altera use different
embedded features to implement DDR controllers. In-
formation presented below was obtained from Altera’s
MegaCore user guide [2] and; Xilinx application note
[3] and libraries guide [4].

SSTL-2 signaling – the normal drive strength for all
inputs and outputs is specified as SSTL-2, defined in
the JEDEC Standard [5]. This feature is present in both
Xilinx’ and Altera’s Spartan-3, Virtex-2, 2P, 4 and 5,
Stratix and Cyclone device families. The drives strength
must be specified by the system designer in order to
correctly perform design prototyping.

Frequency shift – circuit used to generate the 90◦

phase clock. Both Altera’s Stratix and Cyclone families

contain the Enhanced phase-locked loop that provides
phase shifting. The Spartan-3 and Virtex-2, 2P, 4 and
5 families contain Digital Clock Managers (DCM) ele-
ments.

Double data rate registers – used to send and
receive data to external memory. Altera’s Stratix family
contains dedicated DDR registers called DDIO built in
the I/O element (IOE). In Cyclone series, the DDR
input registers are implemented with three internal logic
elements registers (LE). These elements are used by
primitive instantiation in the HDL code. For Xilinx’
Spartan-3, Virtex-2, 2P, 4 and 5 device families, built-
in DDR input and output registers are available at the
I/O blocks. For Xilinx’ Spartan-3, Virtex-2, Virtex-2 Pro
and Virtex-4 device families, input DDR registers are
inferred by the Xilinx ISE tool. Output DDR registers
must be instantiated using FDDRRSE, FDDRCPE or
ODDR (Virtex-4,5) primitives.

DQS delay circuit – used to center-align the data
strobe DQS with data DQ. In Altera’s Stratix and Stratix-
II devices series, the input-output element (IOE) provide
a process, voltage and temperature (PVT) dynamically
compensated 90◦ phase shift to delay DQS. In Stratix-
III and IV, a DQS phase-shift circuitry uses a DDL to
capture read data. In Cyclone series, the phase shift is
guaranteed by manual instantiation of LEs forming static
delay chains. The value of the delay is set by a constraints
script used in the implementation design step. For Xilinx’
Virtex-4 and Virtex-5 devices families, absolute delay
elements called IDELAY provide picoseconds resolution
over PVT. They are built into each IO block and are used
to configure the delay over the DQS group. In Spartan-3,
Virtex-2 and 2P device families, the delay is built with a
chain of internal logic elements (look up tables or LUTs).
The amount of delay is controlled by the number of LUTs
inserted in the DQS signal.

All resources listed before must be instantiated in the
HDL code by the module developer from the correct ven-
dor library. In our approach, these resources are grouped
together into the I/O sub-block in order to increase the
design reusability by facilitating the recoding process.

In the next section, it will be reported the implemen-
tation and test of the DDR controller over a development
board.

4. IMPLEMENTATION AND TESTS

The DDR memory controller can only be considered
validated after successful operation on an actual circuit.
The physical implementation results and the system pro-
totyping procedure are presented in this section.

4.1. Controller Implementation

The DDR controller was implemented in VHDL lan-
guage as structured into sub-blocks showed in section 2.
The IOB module was implemented in structural format as
a firm-IP module, instantiating individually defined and
placed technology-dependent elements from the Xilinx
Unisim library. It contains STLL driver buffers, the DDR



Table 1. DDR controller synthesis results.

Sub-block Slices flip-flops LUTs # lines
Control 136 134 259 1530
Data-path 946 1095 548 3345
I/O 43 178 80 820
DDR controller 1099 1375 873 7760

registers and the logic elements used to implement the
delay line circuit. Also, the clock generation circuit is
realized by instantiating one DCM from the Unisim li-
brary in the VHDL code, on a module separated from the
DDR controller IP. The Digilent XUPV2P board is used
as system platform to test the DDR controller. This board
contains a Virtex-2 Pro FPGA with a 100 MHz clock
oscillator and external 512 MB DIMM DDR SDRAM
module.

Before the board implementation, both functional and
timing simulations were performed using Modelsim XE
6.0a software. The synthesis results for a Virtex-2 Pro
FPGA using ISE 9.2 tool are shown in the Table 1. The
controller was implemented for DQ 64-bit wide, DQS 8-
bits wide and achieves frequencies higher than 220 MHz.
As a measure of the reusability of the code, one can count
the number of lines that the designer can keep form a
design to the next one. The recoding effort in adapting
the DDR controller to a new design is done over about
10% of the total source code lines. The controller soft
sub-blocks are the control and the data-path and the firm
sub-block is the I/O, which represents 4% of all the slices
used by the controller. The synthesis results shown the
reusable code part is most significant in this design.

After the synthesis, the next step in the design flow
is the physical implementation of FPGA. ISE tool per-
forms the physical implementation from three processes:
translate, map and place&route. In this last step, the
timing and placement constraints defined by the devel-
oper are used. The placement constraints allow the tool
to map the controller to the FPGA pins that interface
the external memory. The synthesis tool uses the timing
constraints to force the routing step to meet the system
timing requirements for the FPGA implementation. Also,
they are used to set the system clock speed and the
maximum allowed delay in specific nets. In the DDR
controller implementation, the constrained nets are the
DQS delayed used as clock to capture read data. In the
ISE tool, the maximum delay allowed to a given net is
set in the user constraints file (UCF) by the line:
NET "net_name" MAXDELAY = 2500ps;

4.2. Test and Verification

The DDR controller verification is complete after the
test over the development board. Both functional and
timing simulations are not enough because they do not
take into account the external propagation delays. Also,
memory modules can present skew between data and
strobe signals, generating an unpredictable data capture
behavior. Memory test methods can be used to detect
timing spreading generated by FPGA internal or external
routing delays.

The test approach uses the DDR controller IP, the
interconnections between memory and FPGA and the
external memory as a single circuit under test. Supposing
that the external DDR SDRAM memory is free from
errors, writing a data pattern into the external memory
and reading it back is used to validate the DDR controller
implementation. A built-in self-test module is used to
generate the data pattern applied to the DDR controller,
selecting the memory operation, address range tested and
the data pattern. The test methodology used to verify the
DDR controller was already presented in [6].

5. CONCLUSIONS

Complex systems that use large amounts of informa-
tion, as the multimedia equipments, need external mem-
ory modules to hold temporary data. The use of FPGAs
for system prototyping and verification is interesting
but they have limited internal memory capacity. DDR
memories are very efficient devices but the design of
FGPA DDR memory controllers is a challenging task.
This paper presented reusable IP module with minimum
non recurrent engineering effort by structuring the design.

The main purpose in using a hardware description
language, beyond system simulation and verification, is
to reuse the code in different system implementations.
When dedicated logic elements are used to interface with
the external DDR memory, it is necessary to instantiate
some elements from vendor libraries at defined device
locations. These circuits are isolated into firm modules
and are reengineered for each new device or circuit board.
The controller logic and state machines are encapsulated
on soft modules and reused as-it-is into new designs.

Also, as we have presented in this paper, the knowl-
edge of the synthesis tool is important to guide the
implementation in order to meet the design requirements.
In the last years, the new FPGA devices started to port
new embedded elements to support faster double data rate
memory interfaces standards like DDR2 and DDR3. The
use of these elements in new memory controllers, how-
ever need a design methodology like the one presented
in this paper.

References

[1] K. Ryan, “DDR SDRAM functionality and controller read
data capture,” Micron Design Line, vol. 8, p. 24, 1999.

[2] MegaCore: DDR and DDR2 SDRAM High-Performance
Controller User Guide, Altera Corporation, 2008.

[3] Application Note 802: Memory Interface Application Notes
Overview, Xilinx, 2007.

[4] ISE 8.1i Software Manual: Libraries Guide, Xilinx, 2007.

[5] JEDEC, JESD79: Double Data Rate (DDR) SDRAM Spec-
ification, JEDEC Solid State Technology Association, Vir-
ginia, USA, 2003.

[6] A. C. Bonatto, A. B. Soares, and A. A. Susin,
“DDR SDRAM Memory Controller Validation for FPGA
Synthesis,” in LATW2008: Proceedings of the 9th IEEE
Latin-American Test Workshop, Puebla, Mexico, Feb. 2008,
pp. 177–182.


