
CROSSBUS: A PROGRAMMING MODEL AWARE NOC

Gabriel Oshiro Zardo
1,3
 and Dominique Houzet

2,3

1Universidade Federal do Rio Grande do Sul, Porto Alegre, BRAZIL {gabrieloshiro@gmail.com}

2Institut National Polytechnique de Grenoble, Grenoble, FRANCE {dominique.houzet@lis.inpg.fr}

3Grenoble Image Parole Signal Automation Laboratoire, Grenoble, FRANCE

ABSTRACT

Network on Chip (NoC) links can reduce the

complexity of designing wires for predictable speed,

power, noise, reliability, etc., thanks to their regular, well

controlled structure. From a system design viewpoint,

with the advent of multi-core processor systems, a

network is a natural architectural choice. Besides of that,

shorter time-to-market requires automation of the system

synthesis from high-level specifications. This work

presents a design flow to automate a Network on Chip

generation targeting FPGA and dataflow applications. It

also presents a hardware and software co-design flow for

applications specified with the SystemC language as a

programming model. We argue in this paper that efficient

optimized NoC design is achievable through direct

programming model primitives implementation in the

NoC.

1. INTRODUCTION

Increasing transistor density, higher operating

frequencies, short time-to-market and reduced product

life cycle characterize today’s semiconductor industry

scenery. Under these conditions, designers are developing

ICs (Integrated Circuit) that integrate complex

heterogeneous functional elements into a single chip,

known as a System on a Chip (SoC). Intellectual property

cores, interconnection architectures and interfaces to

peripheral devices compose a SoC. Traditional on-chip

interconnection architectures, such as dedicated wires and

shared busses, can be considered inefficient for future

SoC. Dedicated wires present poor reusability and

flexibility, while shared busses transmit only one word

per clock cycle and offer limited scalability. According to

ITRS estimation, in 2012, SoC will have hundreds of

hardware blocks (called IP cores), operating at clock

frequencies near 10 GHz [1]. In this context, a Network-

on-Chip (NoC) appears as a possible solution for future

on-chip interconnections due to the following features: (i)

energy efficiency and reliability; (ii) scalability of

bandwidth when compared to traditional bus

architectures; (iii) reusability; (iv) distributed routing

decisions. A NoC is an on-chip network composed of

cores connected to routers, and routers interconnected by

communication channels. Crossbus is the NoC solution

developed by GIPSA Lab and it is a new approach for

Network on Chip issues targeting FPGA devices.

Many networks on chip systems were developed based

on different characteristics (interconnection type

topology, commutation modes, routing algorithms, etc.)

to present faster processing, good routing algorithms,

quality of service, energy efficiency and reusability.

SPIN (Scalable Programmable Integrated Network)

was develop by LIP6 in the year of 2000 [2]. This NoC is

disposed in a topology of a fourth level tree, thus it has a

dynamic routing algorithm. FAUST (Flexible

Architecture of Unified System for Telecommunication)

[3] was develop by CEA LETI, one of Grenoble’s

computer architecture laboratory. This NoC proposes a

new architecture interconnection for fourth generation

mobile phones. QNoC [4] has a 2D topology based on

XY routing algorithm. Irregularities on its topology are

allowed but it depends on the application. Priority levels

can be attributed for packet routing depending on

message type. STMicroeletronics developed Spidergon

[5]. This NoC presents a particular topology, a ring where

the transversal diagonals are linked, just like an octagon.

Arteris is the first Network on Chip commercialized by

Arteris, a French company created in 2003. It proposes

exploration and implementation utilities [6]. Arteris

accepts parameters for its creation. It is also compatible

with a lot of academic and industrial standard interfaces.

×PIPES [7] can be generated by a model at RTL level

using SystemC language. Application modeling is made

by a task graph that shows the bandwidth between all

communicating tasks. Ætheral [8] is a Network on Chip

developed by Philips. It offers a design flow based on

bandwidth and communication latency so IP blocks can

automatically be placed around the NoC. µspider [9] is

the result of a collaborative work between IETR and

LESTER laboratory in Rennes and Lorient, France. It

uses TDMA and virtual channels for quality of services,

and the CoreConnect standard for communication

interface.

All these NoC examples have two common properties:

they were developed to be ASIC solutions and they were

supposed to be general propose. With the growth of

transistor density, now it is possible to have a NoC

solution aiming FPGA devices. Besides of that, our

Crossbus NoC is supposed to target dataflow applications

like signal, image and video processing applications.

SystemC is a good programming model for dataflow

applications. We have selected SystemC as the

programming model of the SoC based on Crossbus. So,

based on target programming model and applications we

can simplify and tune the architecture of the entire

Network on Chip. Crossbus was deeply based on these

two main ideas.

2. NOC CROSSBUS

Figure 1 - Example of NoC Crossbus

An example of the Crossbus NoC is given in figure 1.

Crossbus is composed by N FPGA devices, represented in

green, where N is a natural non-null value. In this

example we have N=3 because we have 3 FPGA devices

linked as a ring. They are connected in a bidirectional

ring topology. Each FPGA has a 2D torus router matrix of

O x P routers, where O and P are two natural non-null

values. In this example we have O=P=3, as we can see we

have a square matrix of routers inside each FPGA device.

Each router has Q IP blocks connections. In this case we

have 4 connections for each router. 4 IP connections is

the maximum allowed here because they will share a local

bus. Also we can see in figure 1 that Crossbus uses fixed

XY addresses for routing. It allows also irregularities, as

shown by missing routers. Besides the fact that there are

missing routers we notice that address numbering is

always fixed, some addresses are thus lost. This regularity

of routers arrangement and simplicity of router numbering

let us automatically generate a Network on Chip from a

XML description parsed from a SystemC application

code. In this way it is possible to target automatically

mutli-FPGA linked with high speed serial links. The

serial links are incorporated in the NoC paradigm

allowing a transparent implementation on multi-FPGA.

FPGA devices are linked as a ring by bidirectional

high bandwidth links using Rocket IO protocol to

communicate. Inside the FPGA device, routers

communicate using Fast Simplex Links (FSL) standard,

proposed by Xilinx. The routing algorithm used here is

hardwired and deterministic. It is a kind of XY routing.

The first row is called the main axis. Several restrictions

must be followed:

• There is always a router on the main axis if there

is at least one router in the same column.

• A router is fully connected if there are other

routers in the same axis (row or column).

Thus if there is no direct link between two routers, it

is always possible to route through the main axis. Two

routers on the same column or row are routed directly. If

two routers are not in the same FPGA, the routing is

established through the main axis. If two routers are in the

same FPGA but not on the same axis, the vertical routing

is performed first. If we meet the same row before

meeting the main axis, the rooting is performed directly

on the row, else the rooting is performed through the main

axis. Thus the main axis is more used than the others and

then is doubled (bi-directional).

The torus topology is susceptible of deadlocks on

router transfers. That is why a priority level is established

between horizontal and vertical axis. The first row has the

highest priority on transfers, the vertical axis have the

second priority level, the horizontal axis have the third

and local transfers have the least significant priority level.

So every time that a low priority transfer (such as a local

transfer) is being made and another transfer arrives by

some higher priority link (such as vertical FSL), the local

transfer must be stopped and the higher priority transfer

will take place and then the less priority transfer can

restart. This process avoids interlocking between data

transfers. Also, this fully hardwired low overhead routing

algorithm allows dynamic tasks creation and migration,

for both software and hardware through partial dynamic

reconfiguration of FPGA [10].

2. DESIGN FLOW

Designers increasingly rely on reusing of Intellectual

Property and on raising the level of abstraction to respect

SoC market characteristics. However, most hardware and

embedded software codes are recoded manually from

system level. This recoding step often results in new

coding errors that must be identified and debugged. Thus,

shorter time to market requires automation of the system

synthesis from high level specifications. We propose a

design flow intended to reduce the SoC design cost. This

design flow unifies application hardware and software

using a single high level language used as a programming

model. It integrates hardware/software (HW/SW)

generation tools and an automatic interface synthesis

through a custom library of adapters.

(Step 1) First of all the application is modeled in

SystemC [11]. The method presented in this paper

focuses on SystemC models structurally described with

sc_module, which model computation processes and

either sc_signal, a primitive SystemC channel, or sc_fifo a

basic SystemC channel acting as a First In First Out

(FIFO) queue. The application is validated and profiled

for exploration with ModelSim tool.

(Step 2) We manually separate the application in

software and hardware parts. Our SysCellC tool generates

the hardware IP blocks and the C or C ++ codes for

embedded software.

Figure 2 - Design flow (step 1 and step 2)

First SysCellC performs a parsing from synthesizable

SystemC code to C code. Then the hardware blocks are

generated by ImpulseC tool using synthesizable C codes.

Software codes are compiled by Gcc for the embedded

processors (MicroBlaze or PowerPC). Multitasking is

available on the embedded processors with a lightweight

static scheduler implementing the semantic of SystemC

scheduler. For scheduling and communication library we

use a subset of the Remote Memory Access MPI

primitives: MPI_Init (initialization), MPI_Comm_Rank

(ID recover), MPI_Barrier (synchronization), MPI_Put

(DMA writing function) and MPI_Finalize (infinite loop).

Up to now we have implemented only the sc_signal and

sc_fifo communication channels. SystemC parsing is thus

based on five basic primitives: Write_signal() and

Write_fifo() that call MPI_Put to transfer data between

two IP blocks; Read_signal() and Read_fifo() that copy a

local memory buffer and Wait() that calls the lightweight

scheduler. Also, as the SystemC programming model

relies only on the RMA MPI library, the Network on Chip

must only implement this subset. Thus for instance, no

read (MPI_get) is implemented in the NoC. We illustrate

the C generation process with a producer/consumer

example as we can see in figure 3. The wait() calls are

numbered with a parameter in order for the static

scheduler to know where to come back in the thread.
class producer2 :

public sc_module {

public:

sc_out <int> a2;

sc_in <bool> clk;

SC_HAS_PROCESS(producer2);

producer2(

sc_module_name name) :

sc_module(name) {

SC_THREAD(main);

sensitive_pos << clk;

}

void main() {

int nb2;

nb2=2;

while(1) {

if ((nb2%2)==0) {

a2.write(nb2++);

wait();

}

else {

a2.write(nb2);

nb2=nb2+3;

wait();

}

}

}

};

{

int nb2;

nb2=2;

while(1) {

if ((nb2%2)==0) {

write_signal(

F2,1,0,nb2++);

wait(5);

}

else {

write_signal(

F2,1,0,nb2);

nb2=nb2+3;

wait(6);

}

}

}

SystemC Code Generated C Code

Figure 3 - from SystemC code to C code

(Step 3) The NoC Crossbus must be generated according

to a given topology. Routers, links between routers, local

memories, memory controllers, hardware IP blocks and

microprocessors (Microblazes) must be declared in a

Microprocessor Hardware Specification (MHS) file [12].

When we synthesize the NoC Crossbus and the

application IPs we generate a netlist (NGD) file.

Figure 4 - Design flow (step 3)

(Step 4) The Microprocessor Software Specification

(MSS) file has the entire system definitions concerning

the compile settings and software drivers for all IP. All

the application C codes must be compiled and linked with

library files to produce an Executable Linked Format

(ELF) file.

Figure 5 - Design flow (step 4)

(Step 5) Once we have the hardware and software files

we can generate a bitstream file and download it to the

FPGA device(s).

This fully automated flow allows the exploration in the

loop through scripts. It is thus possible to explore

different partitioning and topologies through direct

execution on a multi-FPGA platform.

4. CASE STUDY

In order to evaluate the proposed design flow, we

tested a producer-consumer application. We modeled a

16-threads application, with 8 producers and 8

consumers, a data flow application where every producer

writes a packet of N 32-bit words in a channel connected

with all the consumers. In this manner we can validate the

entire system. The NoC Crossbus generated to support

this application was a system with one FPGA, 4 routers,

each router connected to 2 Microblaze (MB) processors

[13]. Each processor executed two threads, one producer

and one consumer. Also a CDMA application with 7

threads and 7 processors was also used to validate the

NoC Crossbus.

5. RESULTS

Table 1 (see below) shows the area cost for 32-bit

routers with 1, 2 and 4 IP connections.The router cost is

almost the cost of a MicroBlaze with the same frequency.

We can thus build a large SoC with tens or hundreds of

processors implemented on multi-FPGAs. The router cost

presented here includes the network interface and IP

wrapper adaptation. We are compatible with the Xilinx

interface standards (FSL for FIFOs and LMB for

memories). As a comparison, the Hermes NoC [14,15]

which is a 8-bit lightweight NoC targeting FPGAs has a

cost of 278 slices per router and 567 slices with the

network interface. This can be compared to our 1494

slices for a 32-bit router with network interface which is

slightly better. The formula below can be used to compute

the total time T to deliver a set of packets:

 T = (ST + (NF+2)*TF + NH)*NP + (NP-1)

ST = number of clock cycles to generate the header, 4

in the Crossbus NoC; NF = number of flits, 16 for

instance + 2 for the header and end of packet; TF = 1,

each flit spends one clock cycle to be transmitted to the

next switch; NH = number of hops: each time a packet

crosses a switch one clock cycle is needed; NP = number

of packets. Table 2 shows the timing (in clock cycles)

results for the simulation of the producer-consumer

application for packets with 4, 8 and 16 words of 32 bits.

As we can see below, the Crossbus NoC has an overhead

to start to work (System initialization), but since it is

working the other operations consume almost the same

time.
Table 1 – Router area cost

BLOCK IP I0s CLB SLICES FREQUENCY (MHz)

ROUTER with 1 MB 497 1494 173.3

ROUTER with 2 MB 582 1639 178.6

ROUTER with 4 MB 743 1994 203.3

Table 2 – Timing results for producer consumer example

ACTION 4 words 8 words 16 words

System initialization 1385 2281 4057

MPI_init() 426 426 426

MPI_Comm_Rank() 1 1 1

Scheduling 60 60 60

write_signal 86 133 175

MPI_Barrier() 1 1 1

System initialization depends on packet size, because

it represents the first step of processing where all static

variables are set to zero. Static variables represent

SystemC communication channels linking components.

MPI_Comm_Rank and MPI_Barrier take one clock cycle

to execute because they can be directly translated to just

one assembly instruction. Also the synchronization barrier

is hardwired with combinatorial logic. MPI_Init() and

Scheduling times are equal for all the examples because

they don’t depend on packet size, they depend only on the

number of channels of communication. In all these

examples we have 8 communication channels, one for

each producer. Write_signal primitive represents the data

transfer between processing units using sc_signal write()

primitive. The SystemC application programming model

is defined based exclusively on writes (RMA).

Write_signal calls MPI_Put() function to write a memory

block from a processing unit to another one. The results

presented here show the efficient implementation of

SystemC mechanisms thanks to a NoC design dedicated

to SystemC programming model. This optimized NoC

design allows FPGA targeting where area constraints are

strong.

6. CONCLUSIONS

The Network on Chip became a reality and their

importance in the market is growing, especially for

embedded systems and telecommunications. Crossbus

NoC proposes a new solution for Network on Chip issues.

The results presented here show the efficient

implementation of SystemC mechanisms thanks to a NoC

design dedicated to SystemC programming model. This

optimized NoC design allows FPGA targeting where area

constraints are strong. The next step of this research

project is to adapt a MPEG2 application on the NoC.

7. REFERENCES
[1] ITRS http://www.systemc.org/

[2] Guerrier P. and A. Greiner, « A Generic Architecture for on-chip

Packet Switched Iterconnections ». In Design Automation and Test in

Europe (DATE), Paris, Fance, pages 250–256, 2000.

[3] Lemaire R, Lattard D and Jerraya A, « Evaluation des performances

de transferts de données sur un NoC régulé par un mécanisme de

controle de flux ». JNRDM05, May 2005.

[4] Evgeny Bolotin, Israel Cidon, Ran Ginosar and Avinoam Kolodny,

« QNoC : QoS architecture and design process for network on chip ». J.

Syst. Archit., vol. 50, no2-3, pages 105–128, 2004.

[5] Faraydon Karim, Anh Nguyen and Sujit Dey, « An Interconnect

Architecture for Networking Systems on Chips ». IEEE Micro, vol. 22,

no5, pages 36–45, 2002.

[6] « ARTERIS announces STMicroeletronics use of NoC for next

generation wireless infrastructure platform ». Mars 15, 2006.

[7] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide

Bertozzi and Luca Benini, « xPIPES: a Latency Insensitive

Parameterized Network-on-chip Architecture For Multi-Processor SoCs

». In ICCD ’03: Proceedings of the 21st International Conference on

Computer Design, (Washington, DC, USA), page 536, IEEE Computer

Society, 2003.

[8] John Dielissen, Andrei Radulescu, Kees Goossens and Edwin

Rijpkema, « Concepts and Implementation of the Philips Network-on-

Chip ». IPSOC, 2003.

[9] S. Evain, J. P. Diguet and D. Houzet, « µSpider : A CAD Tool for

Efficient NoC Design ». In IEEE NORCHIP 2004, 8-9 November 2004.

[10] F. Berthelot, F. Nouvel, D. Houzet, « A Flexible system level

design methodology targeting run-time reconfigurable FPGAs »,

EURASIP Journal on Embedded Systems, vol. 2008.

[11] SystemC, http://www.systemc.org/

[12] Xilinx. « Platform Specification Format Reference Manual », June

2006. Software version 8.2i.

[13] Xilinx. « MicroBlaze Processor Reference Guide ». Juin 2006.

[14] Moraes, F. « Hermes: an Infrastructure for Low Area Overhead

Packet-switching Networks on Chip ». Integration the VLSI Journal,

38(1), Octobre, 2004, pp. 69-93.

[15] Mello, A. « Virtual Channels in Networks on Chip:

Implementation and Evaluation on Hermes NoC ». 18th SBCCI, pp.

178-183.

