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ABSTRACT 

 

Network on Chip (NoC) links can reduce the 

complexity of designing wires for predictable speed, 

power, noise, reliability, etc., thanks to their regular, well 

controlled structure. From a system design viewpoint, 

with the advent of multi-core processor systems, a 

network is a natural architectural choice. Besides of that, 

shorter time-to-market requires automation of the system 

synthesis from high-level specifications. This work 

presents a design flow to automate a Network on Chip 

generation targeting FPGA and dataflow applications. It 

also presents a hardware and software co-design flow for 

applications specified with the SystemC language as a 

programming model. We argue in this paper that efficient 

optimized NoC design is achievable through direct 

programming model primitives implementation in the 

NoC. 

1. INTRODUCTION 

 

Increasing transistor density, higher operating 

frequencies, short time-to-market and reduced product 

life cycle characterize today’s semiconductor industry 

scenery. Under these conditions, designers are developing 

ICs (Integrated Circuit) that integrate complex 

heterogeneous functional elements into a single chip, 

known as a System on a Chip (SoC). Intellectual property 

cores, interconnection architectures and interfaces to 

peripheral devices compose a SoC. Traditional on-chip 

interconnection architectures, such as dedicated wires and 

shared busses, can be considered inefficient for future 

SoC. Dedicated wires present poor reusability and 

flexibility, while shared busses transmit only one word 

per clock cycle and offer limited scalability. According to 

ITRS estimation, in 2012, SoC will have hundreds of 

hardware blocks (called IP cores), operating at clock 

frequencies near 10 GHz [1]. In this context, a Network-

on-Chip (NoC) appears as a possible solution for future 

on-chip interconnections due to the following features: (i) 

energy efficiency and reliability; (ii) scalability of 

bandwidth when compared to traditional bus 

architectures; (iii) reusability; (iv) distributed routing 

decisions. A NoC is an on-chip network composed of 

cores connected to routers, and routers interconnected by 

communication channels. Crossbus is the NoC solution 

developed by GIPSA Lab and it is a new approach for 

Network on Chip issues targeting FPGA devices. 

Many networks on chip systems were developed based 

on different characteristics (interconnection type 

topology, commutation modes, routing algorithms, etc.) 

to present faster processing, good routing algorithms, 

quality of service, energy efficiency and reusability. 

SPIN (Scalable Programmable Integrated Network) 

was develop by LIP6 in the year of 2000 [2]. This NoC is 

disposed in a topology of a fourth level tree, thus it has a 

dynamic routing algorithm. FAUST (Flexible 

Architecture of Unified System for Telecommunication) 

[3] was develop by CEA LETI, one of Grenoble’s 

computer architecture laboratory. This NoC proposes a 

new architecture interconnection for fourth generation 

mobile phones. QNoC [4] has a 2D topology based on 

XY routing algorithm. Irregularities on its topology are 

allowed but it depends on the application. Priority levels 

can be attributed for packet routing depending on 

message type. STMicroeletronics developed Spidergon 

[5]. This NoC presents a particular topology, a ring where 

the transversal diagonals are linked, just like an octagon. 

Arteris is the first Network on Chip commercialized by 

Arteris, a French company created in 2003. It proposes 

exploration and implementation utilities [6]. Arteris 

accepts parameters for its creation. It is also compatible 

with a lot of academic and industrial standard interfaces. 

×PIPES [7] can be generated by a model at RTL level 

using SystemC language. Application modeling is made 

by a task graph that shows the bandwidth between all 

communicating tasks. Ætheral [8] is a Network on Chip 

developed by Philips. It offers a design flow based on 

bandwidth and communication latency so IP blocks can 

automatically be placed around the NoC. µspider [9] is 

the result of a collaborative work between IETR and 

LESTER laboratory in Rennes and Lorient, France. It 

uses TDMA and virtual channels for quality of services, 

and the CoreConnect standard for communication 

interface. 

All these NoC examples have two common properties: 

they were developed to be ASIC solutions and they were 

supposed to be general propose. With the growth of 

transistor density, now it is possible to have a NoC 

solution aiming FPGA devices. Besides of that, our 

Crossbus NoC is supposed to target dataflow applications 

like signal, image and video processing applications. 

SystemC is a good programming model for dataflow 

applications. We have selected SystemC as the 

programming model of the SoC based on Crossbus. So, 

based on target programming model and applications we 

can simplify and tune the architecture of the entire 

Network on Chip. Crossbus was deeply based on these 

two main ideas. 

 

2. NOC CROSSBUS 

 



 

Figure 1 - Example of NoC Crossbus

An example of the Crossbus NoC is given in figure 1. 

Crossbus is composed by N FPGA devices, represented in 

green, where N is a natural non-null value. In this 

example we have N=3 because we have 3 FPGA devices 

linked as a ring. They are connected in a bidirectional 

ring topology. Each FPGA has a 2D torus router matrix of 

O x P routers, where O and P are two natural non-null 

values. In this example we have O=P=3, as we can see we 

have a square matrix of routers inside each FPGA device. 

Each router has Q IP blocks connections. In this case we 

have 4 connections for each router. 4 IP connections is 

the maximum allowed here because they will share a local 

bus. Also we can see in figure 1 that Crossbus uses fixed 

XY addresses for routing. It allows also irregularities, as 

shown by missing routers. Besides the fact that there are 

missing routers we notice that address numbering is 

always fixed, some addresses are thus lost. This regularity 

of routers arrangement and simplicity of router numbering 

let us automatically generate a Network on Chip from a 

XML description parsed from a SystemC application 

code. In this way it is possible to target automatically 

mutli-FPGA linked with high speed serial links. The 

serial links are incorporated in the NoC paradigm 

allowing a transparent implementation on multi-FPGA. 

FPGA devices are linked as a ring by bidirectional 

high bandwidth links using Rocket IO protocol to 

communicate. Inside the FPGA device, routers 

communicate using Fast Simplex Links (FSL) standard, 

proposed by Xilinx. The routing algorithm used here is 

hardwired and deterministic. It is a kind of XY routing. 

The first row is called the main axis. Several restrictions 

must be followed:  

• There is always a router on the main axis if there 

is at least one router in the same column. 

• A router is fully connected if there are other 

routers in the same axis (row or column). 

Thus if there is no direct link between two routers, it 

is always possible to route through the main axis. Two 

routers on the same column or row are routed directly. If 

two routers are not in the same FPGA, the routing is 

established through the main axis. If two routers are in the 

same FPGA but not on the same axis, the vertical routing 

is performed first. If we meet the same row before 

meeting the main axis, the rooting is performed directly 

on the row, else the rooting is performed through the main 

axis. Thus the main axis is more used than the others and 

then is doubled (bi-directional). 

The torus topology is susceptible of deadlocks on 

router transfers. That is why a priority level is established 

between horizontal and vertical axis. The first row has the 

highest priority on transfers, the vertical axis have the 

second priority level, the horizontal axis have the third 

and local transfers have the least significant priority level. 

So every time that a low priority transfer (such as a local 

transfer) is being made and another transfer arrives by 

some higher priority link (such as vertical FSL), the local 

transfer must be stopped and the higher priority transfer 

will take place and then the less priority transfer can 

restart. This process avoids interlocking between data 

transfers. Also, this fully hardwired low overhead routing 

algorithm allows dynamic tasks creation and migration, 

for both software and hardware through partial dynamic 

reconfiguration of FPGA [10]. 

 

2. DESIGN FLOW 

Designers increasingly rely on reusing of Intellectual 

Property and on raising the level of abstraction to respect 

SoC market characteristics. However, most hardware and 

embedded software codes are recoded manually from 

system level. This recoding step often results in new 

coding errors that must be identified and debugged. Thus, 

shorter time to market requires automation of the system 

synthesis from high level specifications. We propose a 

design flow intended to reduce the SoC design cost. This 

design flow unifies application hardware and software 

using a single high level language used as a programming 

model. It integrates hardware/software (HW/SW) 

generation tools and an automatic interface synthesis 

through a custom library of adapters. 

(Step 1) First of all the application is modeled in 

SystemC [11]. The method presented in this paper 

focuses on SystemC models structurally described with 

sc_module, which model computation processes and 

either sc_signal, a primitive SystemC channel, or sc_fifo a 

basic SystemC channel acting as a First In First Out 

(FIFO) queue. The application is validated and profiled 

for exploration with ModelSim tool. 

(Step 2) We manually separate the application in 

software and hardware parts. Our SysCellC tool generates 

the hardware IP blocks and the C or C ++ codes for 

embedded software. 



 

Figure 2 - Design flow (step 1 and step 2) 

First SysCellC performs a parsing from synthesizable 

SystemC code to C code. Then the hardware blocks are 

generated by ImpulseC tool using synthesizable C codes. 

Software codes are compiled by Gcc for the embedded 

processors (MicroBlaze or PowerPC). Multitasking is 

available on the embedded processors with a lightweight 

static scheduler implementing the semantic of SystemC 

scheduler. For scheduling and communication library we 

use a subset of the Remote Memory Access MPI 

primitives: MPI_Init (initialization), MPI_Comm_Rank 

(ID recover), MPI_Barrier (synchronization), MPI_Put 

(DMA writing function) and MPI_Finalize (infinite loop). 

Up to now we have implemented only the sc_signal and 

sc_fifo communication channels. SystemC parsing is thus 

based on five basic primitives: Write_signal() and 

Write_fifo() that call MPI_Put to transfer data between 

two IP blocks; Read_signal() and Read_fifo() that copy a 

local memory buffer and Wait() that calls the lightweight 

scheduler. Also, as the SystemC programming model 

relies only on the RMA MPI library, the Network on Chip 

must only implement this subset. Thus for instance, no 

read (MPI_get) is implemented in the NoC. We illustrate 

the C generation process with a producer/consumer 

example as we can see in figure 3. The wait() calls are 

numbered with a parameter in order for the static 

scheduler to know where to come back in the thread. 
class producer2 : 

public sc_module {

public:

sc_out <int> a2;

sc_in <bool> clk;

SC_HAS_PROCESS(producer2);

producer2( 

sc_module_name name) : 

sc_module(name) {

SC_THREAD(main);

sensitive_pos << clk;

}

void main() {    

int nb2;

nb2=2;

while(1) {

if ((nb2%2)==0) {

a2.write(nb2++);

wait();

}

else {

a2.write(nb2); 

nb2=nb2+3;

wait();

}

}

}

};

{

int nb2;

nb2=2;

while(1) {

if ((nb2%2)==0) {

write_signal(

F2,1,0,nb2++);

wait(5);

}

else {

write_signal(

F2,1,0,nb2); 

nb2=nb2+3;

wait(6);

}

}

}

SystemC Code Generated C Code  

Figure 3 - from SystemC code to C code 

(Step 3) The NoC Crossbus must be generated according 

to a given topology. Routers, links between routers, local 

memories, memory controllers, hardware IP blocks and 

microprocessors (Microblazes) must be declared in a 

Microprocessor Hardware Specification (MHS) file [12]. 

When we synthesize the NoC Crossbus and the 

application IPs we generate a netlist (NGD) file. 

 
Figure 4 - Design flow (step 3) 

(Step 4) The Microprocessor Software Specification 

(MSS) file has the entire system definitions concerning 

the compile settings and software drivers for all IP. All 

the application C codes must be compiled and linked with 

library files to produce an Executable Linked Format 

(ELF) file. 

 

Figure 5 - Design flow (step 4) 

(Step 5) Once we have the hardware and software files 

we can generate a bitstream file and download it to the 

FPGA device(s). 

This fully automated flow allows the exploration in the 

loop through scripts. It is thus possible to explore 

different partitioning and topologies through direct 

execution on a multi-FPGA platform. 

 

4. CASE STUDY 

In order to evaluate the proposed design flow, we 

tested a producer-consumer application. We modeled a 

16-threads application, with 8 producers and 8 

consumers, a data flow application where every producer 

writes a packet of N 32-bit words in a channel connected 

with all the consumers. In this manner we can validate the 

entire system. The NoC Crossbus generated to support 

this application was a system with one FPGA, 4 routers, 



each router connected to 2 Microblaze (MB) processors 

[13]. Each processor executed two threads, one producer 

and one consumer. Also a CDMA application with 7 

threads and 7 processors was also used to validate the 

NoC Crossbus. 

5. RESULTS 

Table 1 (see below) shows the area cost for 32-bit 

routers with 1, 2 and 4 IP connections.The router cost is 

almost the cost of a MicroBlaze with the same frequency. 

We can thus build a large SoC with tens or hundreds of 

processors implemented on multi-FPGAs. The router cost 

presented here includes the network interface and IP 

wrapper adaptation. We are compatible with the Xilinx 

interface standards (FSL for FIFOs and LMB for 

memories). As a comparison, the Hermes NoC [14,15] 

which is a 8-bit lightweight NoC targeting FPGAs has a 

cost of 278 slices per router and 567 slices with the 

network interface. This can be compared to our 1494 

slices for a 32-bit router with network interface which is 

slightly better. The formula below can be used to compute 

the total time T to deliver a set of packets: 

 T = (ST + (NF+2)*TF + NH)*NP + (NP-1) 

ST = number of clock cycles to generate the header, 4 

in the Crossbus NoC; NF = number of flits, 16 for 

instance + 2 for the header and end of packet; TF = 1, 

each flit spends one clock cycle to be transmitted to the 

next switch; NH = number of hops: each time a packet 

crosses a switch one clock cycle is needed; NP = number 

of packets. Table 2 shows the timing (in clock cycles) 

results for the simulation of the producer-consumer 

application for packets with 4, 8 and 16 words of 32 bits. 

As we can see below, the Crossbus NoC has an overhead 

to start to work (System initialization), but since it is 

working the other operations consume almost the same 

time. 
Table 1 – Router area cost 

BLOCK IP I0s CLB SLICES FREQUENCY (MHz) 

ROUTER with 1 MB 497 1494 173.3 

ROUTER with 2 MB 582 1639 178.6 

ROUTER with 4 MB 743 1994 203.3 

Table 2 – Timing results for producer consumer example 

ACTION 4 words 8 words 16 words 

System initialization 1385 2281 4057 

MPI_init() 426 426 426 

MPI_Comm_Rank() 1 1 1 

Scheduling 60 60 60 

write_signal 86 133 175 

MPI_Barrier() 1 1 1 

System initialization depends on packet size, because 

it represents the first step of processing where all static 

variables are set to zero. Static variables represent 

SystemC communication channels linking components. 

MPI_Comm_Rank and MPI_Barrier take one clock cycle 

to execute because they can be directly translated to just 

one assembly instruction. Also the synchronization barrier 

is hardwired with combinatorial logic. MPI_Init() and 

Scheduling times are equal for all the examples because 

they don’t depend on packet size, they depend only on the 

number of channels of communication. In all these 

examples we have 8 communication channels, one for 

each producer. Write_signal primitive represents the data 

transfer between processing units using sc_signal write() 

primitive. The SystemC application programming model 

is defined based exclusively on writes (RMA). 

Write_signal calls MPI_Put() function to write a memory 

block from a processing unit to another one. The results 

presented here show the efficient implementation of 

SystemC mechanisms thanks to a NoC design dedicated 

to SystemC programming model. This optimized NoC 

design allows FPGA targeting where area constraints are 

strong. 

6. CONCLUSIONS 

The Network on Chip became a reality and their 

importance in the market is growing, especially for 

embedded systems and telecommunications. Crossbus 

NoC proposes a new solution for Network on Chip issues. 

The results presented here show the efficient 

implementation of SystemC mechanisms thanks to a NoC 

design dedicated to SystemC programming model. This 

optimized NoC design allows FPGA targeting where area 

constraints are strong. The next step of this research 

project is to adapt a MPEG2 application on the NoC. 
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