
TRANSIENT FAULT-TOLERANT FAST ADDERS IMPLEMENTED IN FPGAS

¹ Guilherme Corrêa, ¹ Helen Franck, ¹ Eduardo Mesquita, ¹ Luciano Agostini, ² José Luís Güntzel

¹ Group of Architectures and Integrated Circuits (GACI) – Dept. of Informatics
Federal University of Pelotas (UFPel) – Pelotas, RS, Brazil

² System Design Automation Lab (LAPS) – Dept. of Informatics and Statistics
Federal University of Santa Catarina (UFSC) – Pelotas, RS, Brazil

{gcorrea_ifm, hsfranck.ifm, emesquita.ifm, agostini}@ufpel.edu.br, guntzel@inf.ufsc.br

ABSTRACT

Single-Event Transients (SETs) are becoming a real

problem in the design of complex electronic systems that
are to be fabricated with nanometer CMOS technologies.
As long as a typical integrated system may require many
arithmetic calculations, the performance of adders under
the presence of SETs may influence the whole system
performance. In this work we investigate three fast adder
architectures protected against SETs using three classical
fault-tolerance techniques. Protected and unprotected
adders were synthesized for Altera Stratix III FPGAs and
the obtained data were used to compare them in terms of
resource use, critical delay and power dissipation.

1. INTRODUCTION

Radiation-induced transient faults are becoming a

relevant matter in the design of high performance
electronic systems that are to be fabricated with state-of-
the-art “nanometer” CMOS technology [1]. Due to their
low noise immunity, nanometer technologies are more
vulnerable to such kind of faults. A transient fault may
occur when an ionizing particle hits a sensitive region of a
circuit causing a transient voltage pulse. The sensitive
regions correspond to the reversed-biased p-n drain
junctions of the transistors that are off [1][2]. As CMOS
devices continue to shrink, radiation-induced soft errors
tend to become more and more frequent in terrestrial
environment.

The radiation-induced transient fault may occur in the
circuit’s combinational part or in a memory element. In
the former case, it is referred to as Single-Event Transient
(SET) while in the latter case, it is known as Single-Event
Upset (SEU) [1].

Until recently, SEUs were considered more seriously
than SETs because the probability of a SET to become an
error was much lower than a SEU. However, it has been
predicted that, due to the continuous shrink of CMOS
devices, by the year 2010 the soft error rate due to SET
will be as great as the soft error rate of unprotected
memories [3]. Therefore, the use of techniques to mitigate
SET effects will become mandatory in forthcoming
designs.

Arithmetic circuits are found in most electronic
systems and very often are responsible for their

performance limitation. Adders play a very important role
among all arithmetic circuits, mainly because they serve
as the basis for practically all other arithmetic operations
such as subtraction, multiplication and division. This way,
with the advent of new problems associated to the design
of state-of-the-art integrated systems, as low immunity to
noise and transient faults, it is necessary to investigate
architectural choices to implement robust adders and to
evaluate each solution in terms of resource use, speed,
power and degree of protection.

This paper presents an evaluation of four different
adder architectures implemented using three different
tolerance techniques. We have described the Ripple-Carry
[4], Carry-Select [5], Carry-Lookahead [6] and the Re-
computing the Inverse Carry-in [7] adders in VHDL,
using the Triple Modular Redundancy [8], Time
Redundancy and Duplication With Comparison
associated with Time Redundancy [9] techniques.

This article is divided as follows. Section 2 describes
briefly each adder architecture and section 3 explains the
fault-tolerance techniques that were used. Section 4
presents the experimental results. Section 6 concludes this
work and enumerates possible future works.

2. FAST ADDERS

Several fast adder architectures can be found in the
literature. Some adders explore architectural
modifications that usually require extra hardware in order
to accelerate the carry propagation chain. This is the case
for the Carry Lookahead [6] and Carry-Select [5] adders.

The philosophy behind the Carry Lookahead Adder
(CLA) is to compute simultaneously several carries [6].
The CLA, just like other basic adders, follows the
structure of the algebraic addition, performing the
addition of the bit Si as a function of the corresponding
bits in the input operands (Ai and Bi) and the resulting
carry of the previous stage (referred to as Ci-1).

The CLA differs from the other adders because the Ci,
which is the carry bit used to compute the addition bit of
the next stage (Si+1), is not generated based on the
addition bit Si. Instead, two auxiliary signals are
generated: Gi and Pi. The first one, called Generate,
indicates the generation of a carry bit in the stage i (i.e.,
Ci = 1) and can be calculated by the following equation:
Gi = Ai . Bi. The signal Pi, called Propagate, indicates that

the carry coming from stage i-1 (Ci-1) is propagated to the
stage i (i.e., Ci = Ci-1). This situation happens when one of
the operands is equal to ‘1’ and the other is equal to ‘0’.
This way, Ci does not depend on Ci-1. The signal
Propagate is calculated by the following equation: Pi = Ai
⊕ Bi.

In the Carry-Select Adder (CSA) the addition is
divided into a given number of sections that are computed
in parallel [5]. This speeds up significantly the carry
propagation, resulting in high operation speed. Each
section performs two additions at the same time: one
considering a ‘0’ as carry-in and another considering a ‘1’
as carry-in. This way, the carry chain propagation is
broken to be accelerated. After all the addition sections
finish their operation, for each section the correct addition
value is selected based on the resulting carry-out of the
previous section.

The drawback of the CSA relies on its high cost in
terms of hardware resources. Resource overhead comes
mainly from the need for using two adders in each
section, in order to allow the parallel computation of the
additions. The high cost of CSA may prevent its use in
several applications where hardware resources are
limited. However, its redundancy may be explored in
order to derive fault-tolerant adder versions.

We developed in a previous work a new adder
architecture based on the CSA which we called Re-
computing the Inverse Carry-in Adder (RIC) [7]. This
architecture reduces the hardware overhead created by the
computation of two sections in parallel, replacing one of
the two adders by a block that is cheaper than an adder.
This way, in each section just one adder generates the
result, assuming that the carry-in is equal to ‘0’. The new
block receives this result R and converts it to R+1,
eliminating the necessity of computing the addition when
the carry-in is equal to ‘1’.

The RIC adder (Figure 1) uses a specific block called
Re-computing Block (RB in the figure) to substitute one
of the parallel adders presented in each section of the
CSA. The remaining Ripple-Carry Adder (RCA) receives
a carry-in equal to ‘0’ and the RB re-computes the result
of this RCA adder to generate a result with the carry-in
equal to ‘1’. This re-computation is based on the
exploration of the binary addition proprieties [10].

RCA
0

RB

0
1

P0

A0...3 B0...3

4

4

C0

4

S0...3

propagate

RCA
0

RB

0
1

P1

A4...7 B4...7

4

4

C1

4

S4...7

Cin

RCA
0

RB

0
1

P0

A0...3 B0...3

4

4

C0

4

S0...3

propagate

RCA
0

RB

0
1

P1

A4...7 B4...7

4

4

C1

4

S4...7

Cin

Fig. 1 – The 8-bit RIC adder is composed by two sections with

one RCA and one Re-Computing Block.

3. SOFT ERROR PROTECTION TECHNIQUES

Among the existing soft error protection techniques,
the Triple Modular Redundancy (TMR) is the simplest

and most used one [9]. It also serves as reference, since
its overhead in terms of hardware resources is known to
be near 200% (for masked IC implementations). The high
resource overhead comes from the fact that TMR requires
the use of three exemplars of the block to be protected
plus a voter circuitry. The outputs of these three blocks
are connected to a voter that decides, by means of a
majority election, which is the correct result. The voter is
the solely block susceptible to error. If an error occurs in
the voter, it may take a wrong decision.

In the Temporal Redundancy (TR) technique the
output of the block to be protected is sampled in three
different moments (clk, clk+d and clk+2d). The time
difference between two consecutive resulting samples
must guarantee the disappearance of the fault, if it occurs.
To implement this technique it is necessary to triplicate
the storage elements in order to store the three samples
that are used as inputs to the majority voter. In this
technique the hardware overhead is smaller than in the
TMR case. However, the TR version is more complex
because it requires different clocks for the three storage
elements. Thus, this technique presents disadvantages
concerning the time necessary to perform the whole
computation, which is approximately equal to clk+2d+tp,
where tp is the voter delay and d is the time required to
perform each computation [9].

The Duplication With Comparison + Time
Redundancy technique (DWC+TR) is an alternative to
TMR. It explores time and hardware redundancy in an
attempt to reduce the hardware overhead. Instead of using
three instances of the block to be protected, as in the
TMR case, it demands only two. The output of each
instance is latched into two registers, being one triggered
at instant clk and the other, at instant clk+d. Hence, four
samples of the block output value are available, two per
block instance. These four samples are fed to the error
detection block, which is responsible for verifying if an
error has occurred in one of the two instances. If that is
the case, the error detector delivers the right value to be
used as the third input of the majority voter. The voter
also receives the output of each block instance. Its output
is stored in a register at instant clk+2d. It is worth to
notice that the amount of time “d”, which is the difference
between two clock edges, must be long enough to allow a
transient pulse to propagate through the logic that is
placed between registers. Otherwise, the probability of
sampling an error becomes higher.

4. EXPERIMENTS AND SYNTHESIS RESULTS

In order to allow high performance and great

integration capabilities, the most recent FPGA families,
such as Altera’s Stratix III, are fabricated with nanometer
CMOS technology, increasing their susceptibility to
transient faults. In FPGAs, transient faults can occur
either in the configuration bits or in the user’s
programmable logic. In the latter case, there are two
possible solutions: use hardened FPGAs or adopt
ordinary FPGAs and apply fault-tolerance to the design

itself. Since hardened FPGAs are prohibitively expensive,
the latter solution seems to be the most reasonable.

In this work we have described in VHDL unprotected
and protected versions of adders for six different data
lengths, ranging from 4 to 128 bits. To serve as a
reference for the comparison, we have also described in
VHDL protected and unprotected versions of the Ripple-
Carry Adder (RCA) with the same data lengths. For each
of the four adder architectures (RCA, CLA, CSA and
RIC) three protected versions were designed: TMR, TR
and DWC+TR.

All adder versions were synthesized for the
EP3SE50F484C2 device (from Stratix III FPGA family)
and validated through functional simulation with delay
using Quartus II software from Altera (version 7.2 SP2)
[11]. Table 1 shows the number of logic elements
(ALUTs) reported by Quartus II for each adder version.

From the data of Table 1 it is possible to conclude that
the protection with TMR results in resource overheads
ranging from 161.3% to 211.1%, being 175% the average
overhead. In theory, the increase of TMR should be
higher than 200% for full custom (masked)
implementations. However, the synthesis algorithms and
the granularity of FPGA programmable elements may
influence this overhead.

Tab. 1 – Number of used ALUTs for each adder version
synthesized and simulated for Stratix III FPGAs.

Number of used ALUTs
ADDER Technique

4 bits 8 bits 16 bits 32 bits 64 bits 128 bits

unprotected 33 62 120 236 468 932
TMR 87 173 337 665 1321 2633
TR 73 138 260 571 1123 2227

RCA

DWC+TR 150 280 530 1030 2031 4288
unprotected 63 120 230 468 924 1916

TMR 196 327 637 1259 2512 5089
TR 129 231 433 838 1646 3343

CLA

DWC+TR 237 436 826 1616 3178 6450
unprotected 65 142 280 556 1110 2215

TMR 184 371 733 1465 2915 5813
TR 105 200 384 823 1619 3220

CSA

DWC+TR 182 402 776 1532 3090 6145
unprotected 55 118 232 460 918 1831

TMR 160 323 637 1273 2530 5044
TR 97 184 352 758 1490 2964

RIC

DWC+TR 166 362 696 1370 2770 5504

Also it is possible to compute the resource overhead
needed to protect adders with TR. It ranges from 37.1%
up to 141.9%, with an average of 81.3%. However, a
careful examination of resource overheads allows us to
conclude that the impact of the extra registers (and voter)
to protect with TR is higher for the RCA and for the CLA,
with these overheads ranging from 116.7% to 141.9% and
from 74.5% to 104.8%, respectively. This is because
unprotected CSA and CLA adders require less ALUTs to
be implemented than unprotected CSA or RIC adders.
Therefore, the impact of the extra resources is not so
prominent for CSA and RIC adders.

The resource overhead needed to protect the adders
with DWC+TR ranges from 175.5% to 354.5%, with an

average overhead of 245.1%. These results are in conflict
with the original purpose of DWC+TR that is to reduce
resource overhead, as claimed by some authors (see [9],
for example). However, it is necessary to remark that our
implementation of DWC+TR are quite conservative, in
the sense that we use four registers, while other authors
use only two.

Table 2 contains critical delay estimates for the
architecture, obtained from Altera TimeQuest Timing
Analyzer [11]. The data obtained show that the adders
protected with DWC+TR present an intermediate
performance. The increase in critical delay resulting from
the use of DWC+TR ranges from 225.4% to 603.7%,
with an average of 320.8%.

Tab. 2 – Critical Delay (ns) for each adder version synthesized
and simulated for Stratix III FPGAs

Critical Delay (ns)
ADDER Technique

4 bits 8 bits 16 bits 32 bits 64 bits 128 bits

unprotected 1.61 2.68 5.12 9.66 18.63 36.97
TMR 2.40 4.01 6.89 12.38 23.29 46.17
TR 10.25 17.10 25.67 47.12 95.86 181.62

RCA

DWC+TR 11.34 13.69 21.02 37.56 74.61 140.03
unprotected 2.75 3.97 4.14 4.94 5.84 7.05

TMR 4.4 5.38 5.73 6.52 7.65 8.97
TR 13.22 20.42 22.05 26.11 29.03 32.08

CLA

DWC+TR 12.61 16.01 17.25 20.19 24.02 27.29
unprotected 2.56 2.94 3.49 4.57 4.86 7.36

TMR 3.36 3.88 4.72 5.37 6.23 8.94
TR 11.47 17.21 20.77 21.71 26.55 31.8

CSA

DWC+TR 10.31 12.39 15.22 14.86 20.07 26.03
unprotected 2.39 2.93 3.63 4.05 4.17 6.76

TMR 3.62 5.5 4.53 4.93 6.36 8.03
TR 11.28 14.56 16.01 19.69 26.06 29.48

RIC

DWC+TR 11.54 11.83 12.79 14.97 18.88 27.28

The use of TMR resulted in the fastest protected
adders, as one could expect. On the other hand, it is
important to note that, considering adders of 32, 64 and
128 bits, the CLA TMR, CSA TMR and RIC TMR
versions are faster than any other RCA version (including
the non-protected ones). This is an important conclusion,
since it means that adders protected with TMR can be
faster than any RCA, including non-protected versions.
The critical delay of TMR versions has exhibited
increases ranging from 17.6% up to 59.9%. In the
average, TMR results in an increase of 35.8% of the
critical delay.

The use of TR presented an increase that ranges from
332.2% to 538%, with an average increase of 413.4%.
These results were expected, since the implemented TR
needs four clock cycles: three to sample the block output
and one to vote the correct result.

It is important to note that among all 4 and 8-bit fast
adders protected with TMR, the CSA presents the lowest
critical delay. However, among all 16, 32 and 128-bit
adders the RIC presents the lowest critical delay. It is also
important to note that RIC adders protected with TMR
require less ALUTs than CSAs protected with TMR and
less ALUTs than some CLAs. Particularly, the 128-bit
RIC adder protected with TMR is almost six times faster

than the 128-bit RCA protected with TMR. Such gain is
obtained using less than twice the number of ALUTs that
the equivalent RCA uses. This is a reasonable cost when
requirements of performance and protection must be
simultaneously met.

Table 3 presents power dissipation estimates obtained
through the Altera PowerPlay Power Analyzer tool [11].
Although these results do not allow a comparison of the
architectures themselves, one can note that the adders
protected with TMR presented the lowest power increase
(36.1% with respect to the non-protected versions). The
adders protected with TR presented intermediate results
and the average increase with respect to the non-protected
adders was of 69%. Adders protected with DWC+TR
have suffered an average increase of 130.1%, hence
corresponding to the worst results.

Tab. 3 – Dynamic power dissipation (mW) for each adder
version synthesized and simulated for Stratix III FPGAs.

Dynamic Power Dissipation (mW) ADDE
R

Technique
4 bits 8 bits 16 bits 32 bits 64 bits 128 bits

unprotected 0.47 0.54 0.72 1.00 1.24 1.88
TMR 0.52 0.72 0.65 1.08 1.90 2.77
TR 0.78 1.15 1.75 2.01 2.26 3.02

RCA

DWC+TR 1.03 1.58 0.19 2.44 4.15 4.66
unprotected 0.49 0.54 0.65 0.89 1.40 1.85

TMR 0.55 0.67 0.91 1.45 1.99 3.27
TR 0.57 0.83 0.95 1.17 2.24 2.96

CLA

DWC+TR 1.00 1.20 1.41 1.94 3.06 4.26
unprotected 0.50 0.53 0.62 1.12 1.51 2.31

TMR 0.61 0.68 0.86 1.21 2.21 4.06
TR 0.66 1.02 1.51 2.05 2.47 3.45

CSA

DWC+TR 0.73 0.19 2.08 2.72 3.87 5.45
unprotected 0.49 0.54 0.63 0.99 1.22 1.97

TMR 0.55 0.74 0.81 1.16 2.09 3.55
TR 0.58 0.19 1.64 2.00 2.13 3.33

RIC

DWC+TR 0.65 1.44 2.14 2.85 3.82 5.02

The CLA architectures showed an average decrease of
5.87% in power dissipation when compared to the RCA
versions. The RIC adder figured as an intermediate
architecture, with an average increase of 5.25% and the
CSA adder showed the worst results, with an average
increase of 10.15%.

5. CONCLUSIONS AND FUTURE WORK

This work presented an analysis of three fast adder
architectures protected against soft errors by using TMR,
TR and DWC+TR techniques. Data obtained from
Altera’s Quartus II syntheses for Stratix III devices
allowed the comparison between the techniques and also
between the fast adder architectures.

The obtained results pointed out that for Stratix III the
TR technique requires less extra hardware resource to
implement protected adders, while the DWC+TR
technique requires more resources than the other
techniques. The critical delay results showed that the
adders protected with TR present the worst performance
and an average increase in critical delay of 413.4%. On
the other hand, the adders protected with TMR showed an

average increase of 35.8% in terms of critical delay,
which is the lowest increase in critical delay among the
three techniques.

Among all 4 and 8-bit fast adders protected with
TMR, the CSA presents the shortest critical delay, while
among 16, 32 and 128-bit adders, the RIC is the one
which presents the shortest critical delays. Another
important conclusion of this work is that RIC adders
protected with TMR require less ALUTs than the CSA
protected with TMR and even less ALUTs than some
CLA adders protected with TMR. The power estimates
showed that the high performance of RIC adders was not
paid in terms of power dissipation, since these adders
figured as intermediate solutions with an average increase
of just 5.25% in relation to the RCA architectures.

As future work we intend to compare masked
realizations of the same fast adder architectures,
considering nanometer CMOS technologies.

REFERENCES

[1] R. Baumann, “Radiation-Induced Soft Errors in Advanced
Semiconductor Technologies”, IEEE Trans. on Devices and
Materials Reliability, v.5, n.3, pp.305-316, Sep. 2005.

[2] C. Messenger, “Collection of Charge on Junction Nodes
from Ion Tracks”, IEEE Transactions on Nuclear Science, v.
NS-29, pp. 2024-2031, Dec. 1982.

[3] P. Shivakumar et al., “Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic”,
International Conference On Dependable Systems And
Networks, pp. 389 – 398, 2002.

[4] K. Hwang, “Computer Arithmetic: Principles, Architecture,
and Design”, New York: Wiley, 1979.

[5] O. J. Bedrij, “Carry-Select Adder”, IRE Transactions on
Electronic Computers, p. 340, 1962.

[6] A. Weinberger, and J. L. Smith, “A Logic for High-Speed
Addition”, National Bureau of Standards, Circulation 591, p. 3-
12, 1958.

[7] E. Mesquita et al., “RIC Fast Adder and its SET Tolerant
Implementation in FPGAs”, 17th International Conference on
Field Programmable Logic and Applications, Amsterdam,
Netherlands (2007).

[8] C. Carmichael, “Triple Module Redundancy Design
Techniques for Virtex FPGA”, Xilinx Application Notes 197,
San Jose, USA, 2001.

[9] F. Lima, et al, “Designing Fault Tolerant Systems into
SRAM-based FPGAs”, International Design Automation
Conference, Proc. New York: ACM, pp. 650 – 655, 2003.

[10] K. Kumar, P. Lala, “On-line Detection of Faults in Carry-
Select Adders”, International Test Conference, pp. 912, 2003.

[11] Altera Corporation, <http://www.altera.com/>, accessed in
March 2008.

