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ABSTRACT 

 
Single-Event Transients (SETs) are becoming a real 

problem in the design of complex electronic systems that 
are to be fabricated with nanometer CMOS technologies. 
As long as a typical integrated system may require many 
arithmetic calculations, the performance of adders under 
the presence of SETs may influence the whole system 
performance. In this work we investigate three fast adder 
architectures protected against SETs using three classical 
fault-tolerance techniques. Protected and unprotected 
adders were synthesized for Altera Stratix III FPGAs and 
the obtained data were used to compare them in terms of 
resource use, critical delay and power dissipation. 

 
1. INTRODUCTION 

 
Radiation-induced transient faults are becoming a 

relevant matter in the design of high performance 
electronic systems that are to be fabricated with state-of-
the-art “nanometer” CMOS technology [1]. Due to their 
low noise immunity, nanometer technologies are more 
vulnerable to such kind of faults. A transient fault may 
occur when an ionizing particle hits a sensitive region of a 
circuit causing a transient voltage pulse. The sensitive 
regions correspond to the reversed-biased p-n drain 
junctions of the transistors that are off [1][2]. As CMOS 
devices continue to shrink, radiation-induced soft errors 
tend to become more and more frequent in terrestrial 
environment.  

The radiation-induced transient fault may occur in the 
circuit’s combinational part or in a memory element. In 
the former case, it is referred to as Single-Event Transient 
(SET) while in the latter case, it is known as Single-Event 
Upset (SEU) [1]. 

Until recently, SEUs were considered more seriously 
than SETs because the probability of a SET to become an 
error was much lower than a SEU. However, it has been 
predicted that, due to the continuous shrink of CMOS 
devices, by the year 2010 the soft error rate due to SET 
will be as great as the soft error rate of unprotected 
memories [3]. Therefore, the use of techniques to mitigate 
SET effects will become mandatory in forthcoming 
designs. 

Arithmetic circuits are found in most electronic 
systems and very often are responsible for their 

performance limitation. Adders play a very important role 
among all arithmetic circuits, mainly because they serve 
as the basis for practically all other arithmetic operations 
such as subtraction, multiplication and division. This way, 
with the advent of new problems associated to the design 
of state-of-the-art integrated systems, as low immunity to 
noise and transient faults, it is necessary to investigate 
architectural choices to implement robust adders and to 
evaluate each solution in terms of resource use, speed, 
power and degree of protection.  

This paper presents an evaluation of four different 
adder architectures implemented using three different 
tolerance techniques. We have described the Ripple-Carry 
[4], Carry-Select [5], Carry-Lookahead [6] and the Re-
computing the Inverse Carry-in [7] adders in VHDL, 
using the Triple Modular Redundancy [8], Time 
Redundancy and Duplication With Comparison 
associated with Time Redundancy [9] techniques. 

This article is divided as follows. Section 2 describes 
briefly each adder architecture and section 3 explains the 
fault-tolerance techniques that were used. Section 4 
presents the experimental results. Section 6 concludes this 
work and enumerates possible future works.  
 

2. FAST ADDERS 
 

Several fast adder architectures can be found in the 
literature. Some adders explore architectural 
modifications that usually require extra hardware in order 
to accelerate the carry propagation chain. This is the case 
for the Carry Lookahead [6] and Carry-Select [5] adders. 

The philosophy behind the Carry Lookahead Adder 
(CLA) is to compute simultaneously several carries [6]. 
The CLA, just like other basic adders, follows the 
structure of the algebraic addition, performing the 
addition of the bit Si as a function of the corresponding 
bits in the input operands (Ai and Bi) and the resulting 
carry of the previous stage (referred to as Ci-1). 

The CLA differs from the other adders because the Ci, 
which is the carry bit used to compute the addition bit of 
the next stage (Si+1), is not generated based on the 
addition bit Si. Instead, two auxiliary signals are 
generated: Gi and Pi. The first one, called Generate, 
indicates the generation of a carry bit in the stage i (i.e., 
Ci = 1) and can be calculated by the following equation: 
Gi = Ai . Bi. The signal Pi, called Propagate, indicates that 



the carry coming from stage i-1 (Ci-1) is propagated to the 
stage i (i.e., Ci = Ci-1). This situation happens when one of 
the operands is equal to ‘1’ and the other is equal to ‘0’. 
This way, Ci does not depend on Ci-1. The signal 
Propagate is calculated by the following equation: Pi = Ai 
⊕ Bi. 

In the Carry-Select Adder (CSA) the addition is 
divided into a given number of sections that are computed 
in parallel [5]. This speeds up significantly the carry 
propagation, resulting in high operation speed. Each 
section performs two additions at the same time: one 
considering a ‘0’ as carry-in and another considering a ‘1’ 
as carry-in. This way, the carry chain propagation is 
broken to be accelerated. After all the addition sections 
finish their operation, for each section the correct addition 
value is selected based on the resulting carry-out of the 
previous section. 

The drawback of the CSA relies on its high cost in 
terms of hardware resources. Resource overhead comes 
mainly from the need for using two adders in each 
section, in order to allow the parallel computation of the 
additions. The high cost of CSA may prevent its use in 
several applications where hardware resources are 
limited. However, its redundancy may be explored in 
order to derive fault-tolerant adder versions. 

We developed in a previous work a new adder 
architecture based on the CSA which we called Re-
computing the Inverse Carry-in Adder (RIC) [7]. This 
architecture reduces the hardware overhead created by the 
computation of two sections in parallel, replacing one of 
the two adders by a block that is cheaper than an adder. 
This way, in each section just one adder generates the 
result, assuming that the carry-in is equal to ‘0’. The new 
block receives this result R and converts it to R+1, 
eliminating the necessity of computing the addition when 
the carry-in is equal to ‘1’. 

The RIC adder (Figure 1) uses a specific block called 
Re-computing Block (RB in the figure) to substitute one 
of the parallel adders presented in each section of the 
CSA. The remaining Ripple-Carry Adder (RCA) receives 
a carry-in equal to ‘0’ and the RB re-computes the result 
of this RCA adder to generate a result with the carry-in 
equal to ‘1’. This re-computation is based on the 
exploration of the binary addition proprieties [10]. 
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Fig. 1 – The 8-bit RIC adder is composed by two sections with 

one RCA and one Re-Computing Block. 
 

3. SOFT ERROR PROTECTION TECHNIQUES 
 

Among the existing soft error protection techniques, 
the Triple Modular Redundancy (TMR) is the simplest 

and most used one [9]. It also serves as reference, since 
its overhead in terms of hardware resources is known to 
be near 200% (for masked IC implementations). The high 
resource overhead comes from the fact that TMR requires 
the use of three exemplars of the block to be protected 
plus a voter circuitry. The outputs of these three blocks 
are connected to a voter that decides, by means of a 
majority election, which is the correct result. The voter is 
the solely block susceptible to error. If an error occurs in 
the voter, it may take a wrong decision.  

In the Temporal Redundancy (TR) technique the 
output of the block to be protected is sampled in three 
different moments (clk, clk+d and clk+2d). The time 
difference between two consecutive resulting samples 
must guarantee the disappearance of the fault, if it occurs. 
To implement this technique it is necessary to triplicate 
the storage elements in order to store the three samples 
that are used as inputs to the majority voter. In this 
technique the hardware overhead is smaller than in the 
TMR case. However, the TR version is more complex 
because it requires different clocks for the three storage 
elements. Thus, this technique presents disadvantages 
concerning the time necessary to perform the whole 
computation, which is approximately equal to clk+2d+tp, 
where tp is the voter delay and d is the time required to 
perform each computation [9]. 

The Duplication With Comparison + Time 
Redundancy technique (DWC+TR) is an alternative to 
TMR. It explores time and hardware redundancy in an 
attempt to reduce the hardware overhead. Instead of using 
three instances of the block to be protected, as in the 
TMR case, it demands only two. The output of each 
instance is latched into two registers, being one triggered 
at instant clk and the other, at instant clk+d. Hence, four 
samples of the block output value are available, two per 
block instance. These four samples are fed to the error 
detection block, which is responsible for verifying if an 
error has occurred in one of the two instances. If that is 
the case, the error detector delivers the right value to be 
used as the third input of the majority voter. The voter 
also receives the output of each block instance. Its output 
is stored in a register at instant clk+2d. It is worth to 
notice that the amount of time “d”, which is the difference 
between two clock edges, must be long enough to allow a 
transient pulse to propagate through the logic that is 
placed between registers. Otherwise, the probability of 
sampling an error becomes higher. 

 
4. EXPERIMENTS AND SYNTHESIS RESULTS 

 
In order to allow high performance and great 

integration capabilities, the most recent FPGA families, 
such as Altera’s Stratix III, are fabricated with nanometer 
CMOS technology, increasing their susceptibility to 
transient faults. In FPGAs, transient faults can occur 
either in the configuration bits or in the user’s 
programmable logic. In the latter case, there are two 
possible solutions: use hardened FPGAs or adopt 
ordinary FPGAs and apply fault-tolerance to the design 



itself. Since hardened FPGAs are prohibitively expensive, 
the latter solution seems to be the most reasonable. 

In this work we have described in VHDL unprotected 
and protected versions of adders for six different data 
lengths, ranging from 4 to 128 bits. To serve as a 
reference for the comparison, we have also described in 
VHDL protected and unprotected versions of the Ripple-
Carry Adder (RCA) with the same data lengths. For each 
of the four adder architectures (RCA, CLA, CSA and 
RIC) three protected versions were designed: TMR, TR 
and DWC+TR. 

All adder versions were synthesized for the 
EP3SE50F484C2 device (from Stratix III FPGA family) 
and validated through functional simulation with delay 
using Quartus II software from Altera (version 7.2 SP2) 
[11]. Table 1 shows the number of logic elements 
(ALUTs) reported by Quartus II for each adder version. 

From the data of Table 1 it is possible to conclude that 
the protection with TMR results in resource overheads 
ranging from 161.3% to 211.1%, being 175% the average 
overhead. In theory, the increase of TMR should be 
higher than 200% for full custom (masked) 
implementations. However, the synthesis algorithms and 
the granularity of FPGA programmable elements may 
influence this overhead.  

Tab. 1 – Number of used ALUTs for each adder version 
synthesized and simulated for Stratix III FPGAs. 

Number of used ALUTs 
ADDER Technique 

4 bits 8 bits 16 bits 32 bits 64 bits 128 bits 

unprotected 33 62 120 236 468 932 
TMR 87 173 337 665 1321 2633 
TR 73 138 260 571 1123 2227 

RCA 

DWC+TR 150 280 530 1030 2031 4288 
unprotected 63 120 230 468 924 1916 

TMR 196 327 637 1259 2512 5089 
TR 129 231 433 838 1646 3343 

CLA 

DWC+TR 237 436 826 1616 3178 6450 
unprotected 65 142 280 556 1110 2215 

TMR 184 371 733 1465 2915 5813 
TR 105 200 384 823 1619 3220 

CSA 

DWC+TR 182 402 776 1532 3090 6145 
unprotected 55 118 232 460 918 1831 

TMR 160 323 637 1273 2530 5044 
TR 97 184 352 758 1490 2964 

RIC 

DWC+TR 166 362 696 1370 2770 5504 

Also it is possible to compute the resource overhead 
needed to protect adders with TR. It ranges from 37.1% 
up to 141.9%, with an average of 81.3%. However, a 
careful examination of resource overheads allows us to 
conclude that the impact of the extra registers (and voter) 
to protect with TR is higher for the RCA and for the CLA, 
with these overheads ranging from 116.7% to 141.9% and 
from 74.5% to 104.8%, respectively. This is because 
unprotected CSA and CLA adders require less ALUTs to 
be implemented than unprotected CSA or RIC adders. 
Therefore, the impact of the extra resources is not so 
prominent for CSA and RIC adders. 

The resource overhead needed to protect the adders 
with DWC+TR ranges from 175.5% to 354.5%, with an 

average overhead of 245.1%. These results are in conflict 
with the original purpose of DWC+TR that is to reduce 
resource overhead, as claimed by some authors (see [9], 
for example). However, it is necessary to remark that our 
implementation of DWC+TR are quite conservative, in 
the sense that we use four registers, while other authors 
use only two. 

Table 2 contains critical delay estimates for the 
architecture, obtained from Altera TimeQuest Timing 
Analyzer [11]. The data obtained show that the adders 
protected with DWC+TR present an intermediate 
performance. The increase in critical delay resulting from 
the use of DWC+TR ranges from 225.4% to 603.7%, 
with an average of 320.8%. 

Tab. 2 – Critical Delay (ns) for each adder version synthesized 
and simulated for Stratix III FPGAs 

Critical Delay (ns) 
ADDER Technique 

4 bits 8 bits 16 bits 32 bits 64 bits 128 bits 

unprotected 1.61 2.68 5.12 9.66 18.63 36.97 
TMR 2.40 4.01 6.89 12.38 23.29 46.17 
TR 10.25 17.10 25.67 47.12 95.86 181.62 

RCA 

DWC+TR 11.34 13.69 21.02 37.56 74.61 140.03 
unprotected 2.75 3.97 4.14 4.94 5.84 7.05 

TMR 4.4 5.38 5.73 6.52 7.65 8.97 
TR 13.22 20.42 22.05 26.11 29.03 32.08 

CLA 

DWC+TR 12.61 16.01 17.25 20.19 24.02 27.29 
unprotected 2.56 2.94 3.49 4.57 4.86 7.36 

TMR 3.36 3.88 4.72 5.37 6.23 8.94 
TR 11.47 17.21 20.77 21.71 26.55 31.8 

CSA 

DWC+TR 10.31 12.39 15.22 14.86 20.07 26.03 
unprotected 2.39 2.93 3.63 4.05 4.17 6.76 

TMR 3.62 5.5 4.53 4.93 6.36 8.03 
TR 11.28 14.56 16.01 19.69 26.06 29.48 

RIC 

DWC+TR 11.54 11.83 12.79 14.97 18.88 27.28 

The use of TMR resulted in the fastest protected 
adders, as one could expect. On the other hand, it is 
important to note that, considering adders of 32, 64 and 
128 bits, the CLA TMR, CSA TMR and RIC TMR 
versions are faster than any other RCA version (including 
the non-protected ones). This is an important conclusion, 
since it means that adders protected with TMR can be 
faster than any RCA, including non-protected versions. 
The critical delay of TMR versions has exhibited 
increases ranging from 17.6% up to 59.9%. In the 
average, TMR results in an increase of 35.8% of the 
critical delay. 

The use of TR presented an increase that ranges from 
332.2% to 538%, with an average increase of 413.4%. 
These results were expected, since the implemented TR 
needs four clock cycles: three to sample the block output 
and one to vote the correct result. 

It is important to note that among all 4 and 8-bit fast 
adders protected with TMR, the CSA presents the lowest 
critical delay. However, among all 16, 32 and 128-bit 
adders the RIC presents the lowest critical delay. It is also 
important to note that RIC adders protected with TMR 
require less ALUTs than CSAs protected with TMR and 
less ALUTs than some CLAs. Particularly, the 128-bit 
RIC adder protected with TMR is almost six times faster 



than the 128-bit RCA protected with TMR. Such gain is 
obtained using less than twice the number of ALUTs that 
the equivalent RCA uses. This is a reasonable cost when 
requirements of performance and protection must be 
simultaneously met. 

Table 3 presents power dissipation estimates obtained 
through the Altera PowerPlay Power Analyzer tool [11]. 
Although these results do not allow a comparison of the 
architectures themselves, one can note that the adders 
protected with TMR presented the lowest power increase 
(36.1% with respect to the non-protected versions). The 
adders protected with TR presented intermediate results 
and the average increase with respect to the non-protected 
adders was of 69%. Adders protected with DWC+TR 
have suffered an average increase of 130.1%, hence 
corresponding to the worst results. 

Tab. 3 – Dynamic power dissipation (mW) for each adder 
version synthesized and simulated for Stratix III FPGAs. 

Dynamic Power Dissipation (mW) ADDE
R 

Technique 
4 bits 8 bits 16 bits 32 bits 64 bits 128 bits 

unprotected 0.47 0.54 0.72 1.00 1.24 1.88 
TMR 0.52 0.72 0.65 1.08 1.90 2.77 
TR 0.78 1.15 1.75 2.01 2.26 3.02 

RCA 

DWC+TR 1.03 1.58 0.19 2.44 4.15 4.66 
unprotected 0.49 0.54 0.65 0.89 1.40 1.85 

TMR 0.55 0.67 0.91 1.45 1.99 3.27 
TR 0.57 0.83 0.95 1.17 2.24 2.96 

CLA 

DWC+TR 1.00 1.20 1.41 1.94 3.06 4.26 
unprotected 0.50 0.53 0.62 1.12 1.51 2.31 

TMR 0.61 0.68 0.86 1.21 2.21 4.06 
TR 0.66 1.02 1.51 2.05 2.47 3.45 

CSA 

DWC+TR 0.73 0.19 2.08 2.72 3.87 5.45 
unprotected 0.49 0.54 0.63 0.99 1.22 1.97 

TMR 0.55 0.74 0.81 1.16 2.09 3.55 
TR 0.58 0.19 1.64 2.00 2.13 3.33 

RIC 

DWC+TR 0.65 1.44 2.14 2.85 3.82 5.02 

The CLA architectures showed an average decrease of 
5.87% in power dissipation when compared to the RCA 
versions. The RIC adder figured as an intermediate 
architecture, with an average increase of 5.25% and the 
CSA adder showed the worst results, with an average 
increase of 10.15%. 

 
5. CONCLUSIONS AND FUTURE WORK 

 
This work presented an analysis of three fast adder 
architectures protected against soft errors by using TMR, 
TR and DWC+TR techniques. Data obtained from 
Altera’s Quartus II syntheses for Stratix III devices 
allowed the comparison between the techniques and also 
between the fast adder architectures. 

The obtained results pointed out that for Stratix III the 
TR technique requires less extra hardware resource to 
implement protected adders, while the DWC+TR 
technique requires more resources than the other 
techniques. The critical delay results showed that the 
adders protected with TR present the worst performance 
and an average increase in critical delay of 413.4%. On 
the other hand, the adders protected with TMR showed an 

average increase of 35.8% in terms of critical delay, 
which is the lowest increase in critical delay among the 
three techniques. 

Among all 4 and 8-bit fast adders protected with 
TMR, the CSA presents the shortest critical delay, while 
among 16, 32 and 128-bit adders, the RIC is the one 
which presents the shortest critical delays. Another 
important conclusion of this work is that RIC adders 
protected with TMR require less ALUTs than the CSA 
protected with TMR and even less ALUTs than some 
CLA adders protected with TMR. The power estimates 
showed that the high performance of RIC adders was not 
paid in terms of power dissipation, since these adders 
figured as intermediate solutions with an average increase 
of just 5.25% in relation to the RCA architectures. 

As future work we intend to compare masked 
realizations of the same fast adder architectures, 
considering nanometer CMOS technologies. 
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