
PARTITIONING IN THE PARROT FLOW FOR PHYSICAL SYNTHESIS

Samuel Nascimento Pagliarini, Marcelo de Oliveira Johann, Ricardo Reis

Universidade Federal do Rio Grande do Sul

ABSTRACT

This paper presents an ongoing work which
comprises the insertion of a Partitioning step in the
PARROT Flow for Physical Synthesis. A partitioning
step was inserted to enclose a simulated annealing based-
placement step of the flow. Runtime and wire length data
were collected to compare the results within and without
the partitioning step on a group of circuits. Also, using
these same circuits, we have collected area and wire
length to analyze the cost of the partitioning step versus
the benefits in runtime and routability. Besides that, the
different ways to create the partitions and manage the
connections between them will be discussed.

1. INTRODUCTION

The reason we started to implement this partitioning
tool was because of the existence of a complete circuit
design flow, including placement, layout generation and
routing, developed at our university. This flow is called
PARROT Flow [1] [2]. However, currently this flow is
extremely time demanding because of the simulated
annealing (S.A.) approach in the placement tool, called
MangoParrot [3]. Because of its characteristics, the
placement tool requires some tuning in order to perform
correctly. The most important parameter to set is the
num_reps_per_cell, which controls the number of
iterations in the inner loop of the S.A. technique. In a
previous study it was determined that this parameter
should be set as the number of cells to the second power,
so the circuit could have an acceptable wire
length/runtime trade off.

When the number of cells in the circuits starts to
increase, the demanding time to place them by a S.A.
approach becomes way too large. Although an analytical
placement tool may be used to reduce the runtime,
simulated annealing based techniques are probably the
best ones when it comes to wire length reduction[4]. This
is why a partitioning tool was implemented: by splitting
the circuit into multiple parts, it is possible to keep the
number of iterations under control so that the placement
tool runtime is considerably decreased, therefore,
diminishing the placement runtime problem.

Some problems arise when we must decide how to
split the circuit and, after placing each partition, we must
bind then together again in a certain way that the
connectivity of the circuit is optimized. These problems
will be presented in the next sections when the virtual pin
representation will be introduced.

Section two presents the current state of this work. In
section three some preliminary results are shown and

discussed. And finally, the conclusions and future work
are hold in section four.

2. CURRENT STATE OF IMPLEMENTATION

When measuring the run time improvement achieved
through partitioning it really does not matter how the
partitioning is done, only the number of cells in the
partition being placed matter. However, that is not true
for placement (measured in wire length) and routing
(measured in unrouted nets) since it is possible to mess
with all the connectivity of the circuit by making wrong
decisions on which cell belong to which partition. The
main idea is that a group of cells that are strongly
connected should be put in the same partition, in a certain
way that the connections between partitions are
minimized and the partitioned circuit characteristics are
kept close to the ones in the original circuit.

In graph theory, a cut is a partition of the vertices of a
graph into two sets. The size of a cut is the total number
of edges connecting two partitions, and a cut is minimal
if the size of the cut is not larger than the size of any
other cut. The idea of finding a minimal cut in a graph
comprises with our idea of strongly connected cells.

 Once the problem is identified we can make use of a
third party tool to create the partitions. Finding the
minimal cut in a graph is the approach of several
partitioning tools available. The chosen tool is called
hmetis [5] and it uses algorithms based on multilevel
hypergraph partitioning schemes [6]. In order to
minimize the placement run time, the partitioning run
time must also be minimized, so the partitioner must split
large graphs very fast. In the circuits that we performed
experiments and collected data, this time is, at most, only
0,00002% of the total placement time without
partitioning.

The hmetis tool must be supplied with a file
containing a weighted graph description that represents
the input circuit for the hmetis partitioner. The developed
tool, called weezer, is responsible for creating this file
and the partitioning/placement management. For later
comparison with other tools and simplicity at the
moment, it is desired that each partition have the same
circuit area or at least close to that. To reach this
requirement we also provide hmetis with a parameter
defining the maximum acceptable difference between
partitions areas. This parameter, called the unbalance
factor, is currently set as 1%, the lowest possible value.
Since weezer itself can not estimate each cell area, it uses
the results from another external tool called CellSE [7] to
estimate the areas and later put these values in the hmetis
graph description file as weights.

Fig. 1 – Congestion analysis

Using a last parameter which specifies the desired
number of partitions we are ready to start the partitioning
and weezer immediately makes a system call and runs
hmetis. After the partitioning is done hmetis writes a file
where each cell from the original circuit is given a
partition number in which it belongs. Weezer reads that
file and creates a new circuit description file (CDF) for
each partition, corresponding to different placement
inputs. These new files contain cells, nets, regular pins
and virtual pins.

The nets that connect two or more cells from the
same partition are written to the corresponding partition
CDF. The regular pins that are used by at least one cell
from the partition are also written. The virtual pins are
created when a net that connects two or more cells from
different partitions is found. The virtual pin
representation is used to maintain the partitions
connectivity.

It is important to notice that the number of virtual
pins is equal to the minimal cut (or double if you count it
once in each partition) only if we split the circuit in two
partitions. When we split a circuit in more than two
partitions the sum of the virtual pins is equal to the
hyperedge cut(sum of minimal cuts from all internal
bisections that hmetis made).

Also on virtual pins: they must be placed properly.
To do this we applied a very simple rule in which a
virtual pin position will be the closest possible to any
other partition that contains the same net. This is clearly
not optimal, but still considerably reasonable and fast to
implement and run. It is reasonable because once close to
one of the other possible partitions, in the worst case it
will be just shifted inside the bounding box formed by
this chosen partition and the possible other ones.

Before we do the placements we must estimate the
circuit area and since all placements are row based, this
means we must estimate how many rows each partition
will occupy. The number of rows is the way we control
the circuit aspect ratio. Currently we are aiming to keep
the circuits with the width the same as the height, in a
squared shape. If necessary or desired this shape can be
easily changed. This feature will also be useful if a future
floorplanning strategy provides a desired area for the
weezer tool. To estimate the number of rows we roughly
add up the areas from all the cells and divide it by the
strip height, which will give us an average slightly bigger
width, in comparison with the height.

At this stage weezer is ready to perform the
placement of all individual partitions. This is done by
calling the MangoParrot placer for each one.

Since MangoParrot is a wire length driven placer all
the circuits placed with it looks like the left side of fig. 1,

Fig. 2 – Area analysis.

Fig. 3 – Unrouted nets analysis.

where the center is heavy populated. When weezer is
used the circuit will look like the right side of fig. 1,
where the congestion is more spread among the hole
circuit area. The image shows that the rounded shapes
may create some areas without cells, which could mess
up the entire placement/partitioning process since our
flow deals with relative positioning. So, when weezer is
binding the partitions it detects these blank spaces and
inserts floating inverters to maintain the circuit shape.
These floating inverters act as filler cells and help the
circuit to be more routable. This result and others are
shown in the next section.

3. PRELIMINARY RESULTS

In order to observe the impact of the partitioning
step in the placement runtime reduction we performed
several placements using a variety of circuits, mostly
obtained from ISCAS98 benchmarks. The results are
shown in fig. 4. The weezer results were obtained using a
2x2 partitioning grid. In the X axis we have the number
of cells. In the Y axis we have the time to place.

Fig. 4 – Mango versus weezer.

 The values in X axis are not in any kind of scale
since that number is obtained from real existing circuits.
Because of that the behavior of the regular placement
curve is a bit twisted but it is close to quadratic. The
same way is the weezer placement curve, in which the
actual behavior is close to linear. If we aim to change the
curve behavior into really linear we can define a
maximum number of cells allowed per partition. Let us
say that the chosen number is 200 cells and it takes 250
seconds to place this number of cells. So, all placements
maximum runtime can be calculated by ((N div
200)+1)*250 seconds, where N is the total number of
cells for a particular circuit.

 One important result that is not shown in fig. 4 is the
whole partitioning management runtime, that is the sum
of CellSE, hmetis and weezer itself runtimes. For the
circuits placed in fig. 4 this time ranges from 0,99s to
1,92s, representing less than 0,001% of the sum of the
placement time for all four partitions. These
measurements and all the placements were made using an
single core ATHLON XP 2000+.

Since a partitioning step is inserted in the flow we
must understand how that will affect the final circuit
layout and characteristics. In order to do that several
circuits were submitted to the weezer tool. Some of the
results obtained are showed in fig. 3 and fig. 4.

In fig. 3 we have the total circuit area for three
different circuits. As expected the partitioning caused a
little area overhead. On the other hand, fig. 4 shows that
the number of unrouted nets is smaller. Altough the
number of unrouted nets is still unacceptable, it is clear
that the congestion distribution leads to an easier routing.

4. CONCLUSIONS AND FUTURE WORK

The main conclusion at the moment is that
partitioning allows simulated annealing based placements

to run in reasonable time. Since simulated annealing
strategies may achieve a wire length very close to
optimal, we must now find out if partitioning does not
affect that condition. This may be achieved by comparing
the results against an analytical based placer. However,
even a wire length increase, due to congestion
distribution, can improve the flow convergence by
improving routability. Also, without the partitioning the
current flow was not able to benefit from the use of
parallelization. Now several partitions placements can be
done in parallel since each partition placement is
independent from each other.

It is interesting to observe that the placement itself
does not require the creation of virtual pins but its final
result may be improved if they are properly placed in
each block boundary, especially for wire length
reduction. In another words, using virtual pins is an
affordable way to decrease the additional wire length
without adding more complexity to the simulated
annealing approach.

As mentioned before the virtual pin positioning is
not optimal: that algorithm can be refined to match the
optimal direction of the virtual pins, even in the cases
when nets have terminals in more than two partitions.
Also, the floating inverters could become real filler cells
and a more detailed aspect ratio/floorplanning strategy
could be developed.

These ideas are either under development or testing,
so the results at the moment are not fully conclusive. This
paper is mostly based on ongoing research although we
strongly believe that all ideas deserve a closer look since
all of then look very promising.

4. REFERENCES

[1] C. Lazzari, C. Domingues, C.J. Güntzel, and R. Reis, “A
New Macrocell Generation Strategy for Three Metal Layer
CMOS Technologies”, VLSI-SoC, Germany, 2003.

[2] C. Lazzari, “Parrot Punch”,
http://www.inf.ufrgs.br/~clazz/parrotpunch
[viewed 24/03/2008].

[3] R.F. Hentschke, “Algoritmos para o Posicionamento de
Células em Circuitos VLSI”, Master dissertation, UFRGS,
2002.

[4] S.H. Gerez, “Algorithms for VLSI Design Automation”,
Chichester: John Wiley, 1999.

[5] G. Karypsis, and V. Kumar, “Multilevel k-way Hypergraph
Partitioning”, VLSI Design, Vol. 11, No. 3, pp. 285 - 300, 2000.

[6] G. Karypsis, and V. Kumar, “METIS - Family of Multilevel
Partitioning Algorithms”,
http://glaros.dtc.umn.edu/gkhome/views/metis
[viewed 24/03/2008].

[7] A.M. Ziesemer, G.B.V Santos, R.F. Hentschke, and R.A.L.
Reis. “Cell Size Estimation in an Automatic Layout Generation
Flow”. 21th South Simposium on Microelectronics, Porto
Alegre, 2006.

http://www.inf.ufrgs.br/~clazz/parrotpunch
http://glaros.dtc.umn.edu/gkhome/views/metis/

	PARTITIONING IN THE PARROT FLOW FOR PHYSICAL SYNTHESIS
	Abstract

