
TOWARDS ACCELERATING LOW-LEVEL VISION IN ROBOTICS

Gianna Rodrigues de Araújo
1

Julio Cesar Paulino de melo
1

José Alberto Nicolau de Oliveira
1

Luiz Marcos Garcia Gonçalves
1

1
Universidade Federal do Rio Grande do Norte

ABSTRACT

This paper proposes a solution to speed up computer

vision algorithms generally used in real-time robotics

applications. The proposed solution integrates hardware

and software components in a platform based on the Nios

II processor. Hardware speed and parallelism are added to

the flexibility and simple structure of event based

programs simplifying the system architecture, making the

processing faster.

1. INTRODUCTION

A challenge that still remains in the robotics area is how

to construct a system to react in real time to visual

stimulus. One of the main problems is related to the use

of traditional computer vision algorithms that are known

to be computationally expensive. That is, operations like

image filtering or even image processing by mathematical

morphology operators may take too much time in a

sequential processor consequently delaying other possible

activities of the whole system. A solution would be to use

small images to compensate the time of the image

processing techniques, but this may be useless for some

applications as recognition.

In order to cut down most of the time spent in the

image processing algorithms many people implement

image processing algorithms in specific hardware

architectures, using high parallelism hardware devices,

thus obtaining good results as showed in the Sonic

Architecture [2], the Multiplier Array for Video

Processing [3] and other works that will be discussed

further in this paper. These architectures are known to be

expensive.

In this context we propose an approach that uses

hardware processing and event based programming on a

platform oriented architecture. The idea is to simplifying

the vision based system while, at the same time,

accelerating some parts of the used algorithms.

This paper is organized as follows. Next Section (2)

discusses the works that are most related to ours. In

Section 3, we introduce the concept of a platform based

system that is the basis of our implementations. In Section

4, we discuss about computer vision algorithms and

systems, and in Section 5 we talk about our system

architecture. Experiments, results and a final discussion is

presented in the remaining Sections.

2. RELATED WORK

Computer vision cover many problems of the

Robotics area, so there are many implemented works that

are related with our job, specially using hardware systems

in order to accelerate the image operations.

The Sonic Architecture is a complex system that

allows the user to configure hardware in real time

providing faster image filtering, multiplying,

accumulating and other operations [2]. The approach is

similar to ours because a hardware/software system is

developed to speed up the digital image processing. The

work is not applied in computer vision, but it could,

turning the image processing faster and saving time to

other image processing methods.

On the other hand, Haynes and [3] implements a

hardware only solution to speed up multiplication of

images, called the “Multiplier Array for Video

Processing”. A flexible bit array multiplier is

implemented that can multiply 25 times faster than a

software solution.

A more applicable work is proposed by Souza and

Bianchi [4] that implement hardware processing

techniques using the hardware description language

VHDL. The main purpose of the work is to speed up the

robot detection in robot soccer games. For that, some

computer vision algorithms or image processing filters are

implemented in VHDL thus improving the processing

time in further steps of the soccer strategy.

The last two works [03, 04] were developed aiming to

solve the same type of problem and are mainly

implemented in software. The Sony Architecture, plus

some other works [05, 06] are systems used to recognize

and identify vehicle plate numbers. The main relation of

these works with ours is the use of image processing

algorithms to find certain data in an image. Of course the

last cited works do not to deal with real time

requirements. But, if a hardware device would be used to

detect the location of the interest data, the image

processing phase would be simpler.

3. PLATFORM BASED SYSTEMS

In the reconfigurable hardware research area, it is

common to use Register Transfer Level (RTL) to design

state machines and other constructions that are direct

related with hardware. These kind of platform based

systems add to hardware systems a way for them to be

used in more complex systems while being controlled by

a single processor.

In general, platform based systems do not have only

specific hardware components in it. They have one or

more processors and a source code that is used to control

the main jobs of the specific hardware. This often

provides more flexibility and configurability to systems

that have many parameters that can be changed in time of

execution. In this case, we can set those parameters via a

software interface, which is better than a hardware one.

In fact, systems that are platform based are slower

because they need to interact with processors via a shared

bus interface. But, in many situations and cases, the

flexibility of this kind of system may be needed, like in

computer vision where there are many application

specific software/hardware to be used. By using classic

hardware design we would need to integrate all hardware

systems via other hardware interfaces, while if using a

platform based system we need to implement only the

communication of the other system parameters via a

common bus interface. This turns the whole system more

scalable and reconfigurable, because all extern

components are isolated of each other.

As said above, platform based systems must have a

processor that controls all the communications between

the components. In our implementations we used the Nios

II processor developed by the Altera Company.

4. COMPUTER VISION ALGORITHMS

Computer Vision is relatively recent area of Computer

Science that, in resume, applies image processing

techniques to provide a way to extract important

information from images or videos. Results of these

operations are generally applied in other systems.

Common computer vision techniques are developed

aiming at providing support to bigger systems that need

some information about images.

The general structure of traditional computer vision

algorithms is shown in Figure 2. First, in the image

acquisition phase, images of the working environment are

acquired and transformed into digital data. Next, the

image is processed through some image processing

techniques that extract data from the image to feed data

structures that are supposed to be more simply to the

application.

Then, resulting data is processed again through some

other methods like neural networks, reinforcement

learning, or some exact methods, no matter, etc. Finally

the result is used in a specific block that does the real job

of the system.

Some solutions as depicted above act in the image

acquisition phase using hardware solutions to provide

better images so the image processing phase, that,

consequently may need less filtering than those required

by many low-level vision algorithms.

Clearly, a big part of the computational delay is

concerned to the image processing phase. For example,

images with 640x480 pixels may take several

milliseconds to be filtered or analyzed. This may be

useless in some applications. For instance, consider a

tracking system that need to follow an object in an image.

Every time the system needs to check the whole image

searching for the object. If it is found, the system can

initialize the tracking job.

The problem is that the system needs to check the

whole image in less than 33 ms, in order to be able to

analyze at 30 fps, which is a common acquisition rate,

until it finds the tracked object. And then use its position

and velocity to optimize the searching area of the image.

This slows down the whole system that could be

performing some other job until the image does not

contain the object.

5. EVENT BASED COMPUTER VISION

ALGORITHMS

In Section 4 we discussed about the way that most

vision systems are implemented and showed some

problems with the traditional used vision architecture. On

the one hand we can rely in this simple model. But, on the

other hand, we can implement it with another point of

view, which is less expensive and that does not block the

system during the execution.

To better understand the implementation of this

proposed approach, let us think about the keyboard event

handling system that is shown in the Figure 3. The main

processor is executing some other job when a certain

interruption is activated warning it that a keyboard event

arrived in the event queue. So, the processor calls a pre

configured routine to handle this event. This routine can

now get the event parameters and pass then to other

applications that might be waiting for that kind of event.

In a similar approach, we can see the image

processing system like an event source that can warn the

processor about the occurrence of some kind of event. In

this way, we can modularize part of the image processing

Image Acquisition

Image Processing

Data Processing

Other Systems

Image data

Data Structures

Data Structures

Figure 1 - Common structure of computer vision

systems

block that was explained in Section 4 and reduce the

computational cost of the whole computer vision system.

Figure 4 shows how the event system would become

with a vision module that can process events in images

and warn the processor that some events occurred. With

our approach, the computer vision systems can become

simpler and faster because a parallel hardware is

processing the image in order to generate events, and only

when such events occur the image processing methods are

called.

A problem with this approach is the specialization of

the system, that is, the definition of image events can

change from one application to another. This means that

what is considered an event to a tracking system, that has

to follow a ball in an image, may not be considered to an

automated robot that is programmed to avoid obstacles.

This means that the system that is processing the images

needs to be reconfigured based on the application that it is

being used for. By using platform designed systems we

found a good solution for this problem. Once we are

talking about integrated hardware/software solutions, it is

easy for the application to set some of the hardware

parameters before starting the work making the system

more flexible an applicable to many purposes, including

thus both cases.

The implementation of an event module into a vision

processing system can directly affect the model showed in

Figure 2. This happens because the model on this figure

has to block the processor during the time that the image

processing block is working. With our approach, this does

not happen because many of the processing is done in a

parallel hardware module. This has lead us to another

model that is shown in Figure 5.

The hardware block is presented as the old image

processing block. The difference is that it does not need

to block the processor in order to execute. Another block

that is connected with the image acquisition block, called

Specific Image Processing, was added in order to turn the

model more generic. This block is necessary in the case

of new or experimental image processing algorithms that

may not be implemented in the hardware module and

need to execute. This may be the worst case of the system

when it works similar to the first model, but our model is

faster because it saves a lot of computing time in the

hardware modules.

6. EXPERIMENTS AND RESULTS

In order to initially validate our idea, we have

observed the behavior of the platform oriented systems

over our architecture. We devised a general filtering

system that is developed at the DSP Builder as shown in

Figure 6.

We used the switches of the development platform

and one of the buttons, respectively, to simulate the

address given by the hardware system bus. By attributing

a constant value to the registers reading and by using a

multiplexer to verify their contents, we could test, in

simulation, that our system behaves as expected.

We have further incorporated the system together with

the Nios using the SOPC Builder, but we have had some

problems while writing in the system bus. Apparently, the

Image Acquisition Image Processing

Data Processing

Other Systems

Image data

Data Structures

Image Event Handler

Additional

information Specific Image
Processing

Figure 4 - Result of adding event based vision

hardware

Vision processing hardware

Vision Event Handler

program

Processor

Calls the handlers that

are waiting for events

Use the event to do

something else

Notify an event that

something happened

Vision event routine
call

Figure 3 - Event based vision system.

Keyboard hardware

Mouse Handler program

Processor

Execute handlers that

are waiting for events

Use the keyboard event

to something useful

Notify an event that a key

was pressed

Keyboard event routine
call

Figure 2 - Common keyboard event handling

reading functions are working correctly however we

could not write in some of the internal components.

Figure 7 shows the component integrated with the

system bus. The bus inputs at the left and right represent

the writing and reading interfaces, respectively.

7. CONCLUSION

We introduce a new idea to perform low level vision

by joining the hardware parallelism and software in a

platform generally used for other purposes based on the

Nios II processor. The novelty is just the event handling

block that was added to the traditional vision structure.

Low level vision is, in general, the bottleneck of

robotics vision that the approach depicted here can help

performing much faster than traditional algorithms. Our

approach uses hardware parallelism when necessary and

can be programmable in order to allow software

operations to be done. By joining both hardware and

software and adding the event handling block we could

devise a useful architecture that has proven, in simulation,

to be applicable in problems where real time is a

requirement.

With the development of platform oriented systems

we get a high degree of flexibility making it possible to

develop solutions based on hardware and software at the

same time. With this, we can specify a model that has

several advantages over the traditional paradigms of

computer vision.

The main advantage is for sure the use of a low

expensive hardware. In fact, our work is still in the

beginning because we have had to observe the behavior

of these systems together with our platform. Besides,

some simulation results could validate it. We are still

finalizing the hardware implementation and resolving

problems with the system bus in order to try a more

complete implementation. This will be the basis for other

works running at our Lab in the Robotics Vision or

Graphics Processing subjects involving integrated

hardware and software.

Figure 6 – General filter developed in the DSP Builder

Figure 7 – Integration between system bus and developed component.

8. REFERENCES

[01] NIOS II Processor, altera website:

http://www.altera.com/products/ip/processors/nios2/ni2-

index.html.

[02] Haynes, S.D., Stone, J., Cheung, P. Y. K., Luk, W.

Video image processing with the Sonic architecture. In:

Computer , vol.33, no.4, pp.50-57, Apr 2000.

[03] Haynes, S.D., Cheung, P.Y.K., A Reconfigurable

Multiplier Array For Video Image Processing Tasks, Suitable

For Embedding In An FPGA Structure. In: FPGAs for Custom

Computing Machines, 1998. Proceedings. IEEE Symposium on

, vol., no., pp.226-234, 15-17 Apr 1998.

[04] Souza, P. V., Bianchi, R. A. C., Implementando

Algoritmos de Visão Computacional em VHDL. In: Revista

Pesquisa e Tecnologia FEI, São Bernardo do Campo, SP, v. 22,

p. 2-8, 2002.

[05] Guingo, B. C., Rodrigues, R. J., Thomé, A. C. G., Técnicas

de Segmentação de Imagens, Extração de Características e

Reconhecimento de Caracteres de Placas de Veículos. In: VII

Simpósio de Informática e II Mostra Regional de Software

Acadêmico, 2002, Uruguaiana-RS.

[06] Campos, T.; Bampi, S.; Susin, A. Sistema de Identificação

de Placas por Processamento Automático de imagens.

Disponível em http://www.iberchip.org/VII/cdnav/pdf/49.pdf.

