
DEVELOPING A MULTICHANNEL HIGH SPEED DDR SDRAM MEMORY
CONTROLLER: A CASE STUDY FOR H.264/AVC DECODER

Alexsandro C. Bonatto, Andre B. Soares, Altamiro A. Susin
{bonatto,borin,susin}@eletro.ufrgs.br

Signal and Image Processing Laboratory (LaPSI)
Federal University of Rio Grande do Sul (UFRGS)

ABSTRACT

Embedded systems used to process high definition
video sequences require storing large amounts of data
while processing. These systems frequently employ
dedicated hardware architectures which are more efficient
to process video signals because of the data parallelism.
Hardware modules perform data processing sharing one
main memory used to store several reference frames. This
shared memory has as main characteristics high capacity
to store data and high bandwidth. In this paper we propose
memory hierarchy architecture to integrate a DDR
SDRAM memory controller in a H.264/AVC video
decoder hardware implementation. The memory hierarchy
contains an arbiter used to control data access priority
between the hardware modules.

1. INTRODUCTION

In high performance video processing systems, an
efficient memory hierarchy design is the key point to
reach real time capacity while the decoding process of full
high definition video sequences is executed. The memory
hierarchy can be understood as the organization of the
data storage elements and the way that they are accessed.
In embedded systems, memory capacity is a very limited
hardware resource. Generally, it is composed by local and
external memories. External memories have more capacity
to store data at low cost because they are manufactured in
large scale. In this context, double data rate synchronous
DRAM memories (DDR SDRAM) have large use in
embedded systems because their low cost and high data
storage capacity.

H.264/AVC [1] is the latest video coding standard of
the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). The
H.264 video standard is defined in three different profiles:
baseline, main and high. This work is focused on the
hardware implementation of the main profile decoder.

Video processing systems computational complexity is
formed by two major components: time complexity and
space (or storage) complexity [2]. Space complexity is
measured by the amount of memory required to hold all
the reference frames and other information while video is
being processed. Time complexity is measured by the
approximate number of operations required to execute an
algorithm. When considering an architecture design, the
time complexity of an algorithm's execution is directly
dependent of the total memory bandwidth available. Thus,
efficient processing architectures are that have best
balance between those two complexities, performing less
memory accesses while processing data. The design of an

efficient video decoder must consider the number of
accesses to the reference memory and the way as these
accesses are performed.

In the H.264/AVC video decoder, a predefined num-
ber of decoded video frames are stored into a reference
memory and are used in the decoder process. The major
amount of data storage complexity in the video decoder is
required to store the reference frames and is limited on
about 12.5 mega-bytes of data. The reference memory is
accessed by different processing units (PU), each one of
them interfacing data in different ways and in different
levels of dependency. In digital video processing systems,
the design of a memory hierarchy is necessary to store the
reference frames and control the read and write requests
from different PUs.

This paper presents an analysis of data access
behaviors from different PUs of a hardware imple-
mentation of the H.264/AVC video decoder. A multi-
channel DDR SDRAM memory controller with access
requests arbiter is designed and simulated. The multi-
channel controller controls data access requests optimizing
the reference memory use by the H.264/AVC decoder. In
this first implementation it is used a round-robin arbiter
scheme with fixed time-slot (time-division multiplexing)
to allow PUs to access the memory channel.

This paper is organized as follows: section 2 presents
the hardware architecture of the H.264 decoder; section 3
presents the multichannel DDR SDRAM controller archi-
tecture proposed; the simulation results are presented in
section 4 and the conclusions are discussed in section 5.

2. H.264 DECODER ARCHITECTURE

The video decoder hardware architecture used as
reference in this work is presented by Agostini in [3]. The
proposed architecture is organized in five main PUs:
motion compensation (MC); intra-frame compensation
(intra); filter; inverse transform (IT) and; inverse
quantization (IQ). The PUs are implemented in VHDL
language to be prototyped and validated over a FPGA
platform. The entropy decoder and control processes are
performed by an embedded processor. Also, this
processor sends the video coded input bitstream to the
decoder and controls the video output. The MC process
and the reference frames memory are not yet fully
integrated with the decoder.

The temporal differences between frames are
processed by the MC to generate one actual frame. This
process is the most computationally demanding in the
video decoder. Also, MC is the decoding process that
generates more stored data requests. The reference frames
used by the MC process are previously decoded and

stored in an shared memory (or main memory). These
frames are produced after full frame decoding, which are
the output of a filter block in H.264. Finally, video output
module needs to fetch decoded frames in the original
order, even when frames are decoded in an arbitrary order.
This produces the need to store these frames at the
external memory. The video decoding process at level 4.0
uses four high definition (HD) 4:2:0 (1920x1080)
reference pictures, representing an amount of 12.5 mega-
bytes of stored data.

The first decoding step of the coded video bitstream
input is the entropy decoder. This process generates the
control elements for MC and Intra prediction processes.
Also, the entropy decoding generates the image residual
information that is added to the predicted frames, either
motion compensated or intra-frame predicted. The
generated images are filtered before the video output and
before they are stored in the main memory.

Fig.1 illustrates the video decoding process organized
as the data flow through the PUs implemented. Each
hardware module in the decoder contains local memory
resources used to process local data information. Due to
the different data access behaviors from the PUs that
interfacing with the main memory, The video output
generator exhibits a line of pixels of the entire image,
which in the case of full HD video, is composed by 120
macroblocks (MBs) in wide. Therefore, a line of MBs is
read from the main memory and stored into the video
output buffer. The decoder output (i.e. filter) generate a
sequence of MBs and each one is stored in a buffer of 2
MBs size to be send to the main memory. The MC
contains a local cache structure that is responsible to
request reference pixels stored into the main memory to
perform the reconstruction process. Those buffers are
necessary to optimize the DDR SDRAM available
bandwidth, storing temporary data on buffers to allow
sharing the memory channel between PUs.

Coded Video
Bitstream

IT-IQ

Filter +

Referece
Frames

Memory

Intra

 MC

Decoded
Video

Entropy Decoder
and Control

Video
Output

2 MB

Residual
Information

Reconstructed
MacroblocksCache

Control
& Arbiter

120 MB

DDR
Memory

Controller

Memory
Channels

Fig 1. H.264 video decoding process flow and the
processing units.

One shared memory is necessary to store several
reference frames used by the MC process. In H.264/AVC,
slices are formed by motion compensated blocks from
past and future (in temporal order) frames. The past and
future frames are not fixed just to the immediate frames, as
in early standards. Each macroblock in a bi-predictive
slice (B slice) can be predicted from one or two reference
frames, using past and future frames. The reference frames
are organized in two lists: 0 and 1.

This architecture requires a frame buffer to hold output
images generated by the filter. If a frame buffer is not
available or, if it is necessary to share the storage

resources, the main memory has to be accessed also by the
video controller. The main memory controller has to
balance and optimize the data accesses sequences
requested by different modules. This is necessary to
reduce the waiting time of hardware modules to access
main memory while processing, stalling the video
decoder.

 Therefore, a multichannel memory controller module
is required to control the data accesses sequences.

 As the video decoding process has an unpredictable
behavior, the MC module can access the main memory in
different rates. Also, the three hardware modules are
connected to the memory controller sharing the same
command and address bus, being necessary to have an
arbiter controlling the data requests.

In the next section will be explained the external DDR
SDRAM memory controller and also the multichannel
memory architecture, as a part of the memory hierarchy.

3. MULTICHANNEL MEMORY CONTROLLER

This section explains the main characteristics of DDR
SDRAM memory [4] and a multichannel controller
architecture is proposed.

3.1. Double Data Rate SDRAM

Double data rate memories contain three buses: a data
bus, an address and a command bus. The command bus is
formed by the signals column-address strobe (CAS), row-
address strobe (RAS), write enable (WE), clock enable
(CKE) and chip-select (CS). The data bus contains the
data signals (DQ), data mask (DM) and data strobe signals
(DQS). Address bus is formed by address (ADDR) and
bank address (BA) signals. These memories operate with
differential clocks CK and CKn, which provides source-
synchronous data capture at twice the system clock
frequency. Data is registered either in the rising edge of
CK and CKn. The memory is command activated starting
a new operation after receive a command from the
controller.

Data words are stored in the DDR memory organized
in banks and pages and each memory page contains 210

data words. Fig. 2 illustrates the timing diagram for a RD
operation in DDR memory. Data is transferred in bursts,
sending or receiving 2, 4 or 8 data words in each memory
access.

RAS NOP NOPCAS NOPNOP NOPNOP NOPNOP NOPNOP

Bank
ROW

NOPBank
COL

D0 D1 D2 D3
CL = 2

Preamble

CK

CMD

ADDR
BA

DQS

DQ

Step #1 Step #2 Step #3

Fig. 2: Timing diagram of reading data.

Data memory contents are accessed by page activation,
using the row-address strobe (RAS) command (step #1).
After this, the memory controller sets the column address,
called as a column-address strobe (CAS) command (step
#2). In the case of a RD operation, data is available after

the CAS Latency (CL) which can be 2, 2.5 or 3 clock
cycles (step #3). The data words D0:D3 are transmitted
edge aligned with the strobe signal DQS after the CAS
latency. DQS is a bidirectional strobe signal used to
capture data DQ. To change to another memory page, is
necessary to deactivate the current page. This is done by
using the pre-charge (PRE) command and takes about 10
cycles after the last data access operation.

When interfacing with DDR SDRAM memories,
latency becomes a problem if each consecutive data access
is performed in different memory rows. In this case,
changing memory row requires the execution of Active
and Pre-Charge commands. Frequent row changes reduce
the effective data bandwidth, degrading the memory
interface speed.

3.2. Multichannel Memory Controller

The main purpose of the multichannel memory
controller is to guarantee Quality of Service (QoS)
between the PUs accessing the external memory. This
means to generate equilibrated data bandwidth and fast
access permissions to read or write shared data in the
decoding processes. Its internal architecture is illustrated
in the Fig.3. It is designed with three access interfaces with
respective command, address, data and control signals.
The multichannel interface uses a simple protocol where
an acknowledge (ACK) signal gives permission to the
module after the received access request. There are three
main hardware modules: an external memory controller,
an arbiter and a data-path. The external memory controller
was implemented as an intellectual property (IP) module,
presented before in [5].

The arbiter controls the access of each hardware
module to the time-division multiplexed memory channel.
An internal table stores the maximum occupation in
number of clock cycles of the memory channel by each
hardware module.

DDR SDRAM
Controller

DDR
SDRAM

Filter

MC

Arbiter
and Control

Data-Path

Multichannel Memory Contoller

Video Out DATA

ADDR
CMD

Fig. 3: Multichannel memory architecture.

Video output and filter modules access the main
memory at a constant rate, in the exhibition rate. For
1080p 4:2:0 video sequences, filter send data to be stored
in the main memory at an effective rate of 245,760 macro-
blocks per second, i.e. 94.3 mega-byte per second. Data is
send in bursts while the macro-blocks are decoded, and is
stored in the memory. This macro-block rate is the same
for the video output. Either the video output and the filter
requires local memory resources to store MBs.

The MC architecture to be implemented with the
controller proposed in this paper is presented by Azevedo
in [6]. As the referred author mentions, the memory
throughput is mainly needed when the main profile is

considered (because the bi-prediction support) and as well
high resolution videos (as HDTV). The total memory
throughput of 956.448 mega-bytes per second is neces-
sary for decoding HDTV video sequences. In order to
optimize memory accesses, the author implements a three
dimensional data cache architecture and techniques of read
only the necessary samples and interleaved samples stored
at the main memory. The use of a cache can reduce in
more than 62% of external memory accesses. Using this
approach, the total bandwidth for MC accessing external is
about 382.57 mega-bytes per second.

Tab.1 summarizes the main memory access rates
interfaces estimated for decoding 1080p 4:2:0 H.264/AVC
video sequences.

Tab 1. Data access behaviors for 1080p 4:2:0 video.

Data Direction Data Behavior Access Rate
(Mbyte/s)

MC Read Line of pixels 382.57

Video Out Read macro-block 94.3

Filter Write macro-block 94.3

The total bandwidth required to interface with the main
memory is about 571.17 mega-bytes per second. For a
DDR SDRAM memory, running at a clock rate of 100
MHz and data width of 64 bits, the peak bandwidth is
1,600 mega-bytes per second. This memory interface is
sufficient to implement the hardware video decoder
architecture.

Data access latency is not a problem when more than
one read or write commands are requested to the memory.
The read and write commands can be concatenated and
data can be accessed continuously.

The memory controller can schedule the received
commands from the hardware modules to better organize
memory data accesses. This simple operation can increase
the effective number of data access rates. Local memory
caches, as the one proposed in [6] complete the memory
communication optimization task.

4. FUNCTIONAL SIMULATION AND ANALYSIS

Data pattern generators were used to simulate the
access behavior for the video decoder hardware modules.
The multichannel controller arbiter was implemented
performing a Round-Robin scheduling scheme, where
each data channel have a fixed time-slot to access the
shared memory. Different time-slot sizes were used to
made a performance comparison between the two main
factors of QoS: the available bandwidth and; the fast
access permission to use the memory channel. In this
implementation of the video decoder, each PU that
interfaces with the main memory contains a local memory
used to store data while processing.

Tab. 2 summarizes the main information of each PU
sharing the main memory regarding the required PUs
bandwidth. Also, each PU are classified as bandwidth or
latency dependent. In the case of a latency dependent
process, the PU require to use the memory channel
immediately.

Tab 2. processing units and the memory dependence.
MC Video Out Filter

Sensitivity latency bandwidth latency

Mean channel request interval
(clock cycles)

385 48 828 407

Maximum consecutive Access
(clock cycles)

61 2 958 40

The maximum consecutive access in clock cycles

represents the total clock cycles used from the memory
bandwidth for each data access, including the extra cycles
for activate and deactivate the memory pages.

The simulation setup was done using a previously
recorded data access pattern obtained with MC simulation.
The data pattern generators was used with the designed
multichannel memory controller with a simple round-
robin arbitration scheme. Tab. 3 shows the simulation
results for different time-slot (TS) controlled by the
arbiter.

Tab. 3. Simulation results and accesses behaviors for
PUs (in clock cycles).

MC Video Out Filter

Access Wait Access Wait Access Wait

TS32 41 32 46 102 23 38

TS64 42 50 69 154 23 54

TS128 42 99 116 242 23 25

TS256 42 118 170 283 23 135

TS512 42 129 274 229 23 147

As the simulation results shown, the increase in the
time interval of using the memory channel, bigger is the
wait time for other PUs. Also, it can be seen that processes
with bandwidth sensitivity increase the relation between
access and wait by increasing the time interval.

The memory controller is able to share the DDR
SDRAM memory between PUs, but some penalties are
detected when using this kind of arbitration. The processes
that are latency sensitive may not access the memory
channel as faster they need because the bandwidth
sensitive process. This can cause delays in the decoding
process and degradation of the real-time capabilities of the
video decoder.

5. CONCLUSIONS

In video decoder architectures, an efficient memory
hierarchy is necessary to allow real-time decoding. The
high volume of information requires a large external
memory to store several reference frames. Local memory
reduces needed external memory bandwidth allowing
dedicated hardware modules to execute local processing
tasks. Nevertheless, memory channel multiplexing is
needed between different hardware modules.

This work presented an external multichannel memory
controller which permits to define different memory
bandwidth for each processing module. The controller has
reuse facilities as it maintains the characteristics of the
single channel controller presented in [5].

Data pattern generators can be used to simulate the
data access behavior of the real application, if the modules
are modeled correctly. As the video output have constant
bit-rates, the estimable throughput can be concerned to the
motion compensation process. The overall system
integrating the multichannel controller and the data pattern
generators can be implemented in a hardware
development platform to validate the memory hierarchy
architecture using a real external memory. The controller
was successfully tested considering the communication
needs of the main modules of an H.264 decoder.

Future works include on board testing of the controller
and the study of different memory channel arbitration
schemes.

6. REFERENCES

[1] ITU-T Recommendation H.264 – Advanced video coding
for generic audiovisual services, Video Coding Experts Group,
Mar. 2005.

[2] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro,
“H.264/AVC baseline profile decoder complexity analysis,”
Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 13, no. 7, pp. 704–716, July 2003.

[3] L. V. Agostini, A. P. A. Filho, W. T. Staehler, V. S. Rosa,
B. Zatt, A. C. M. Pinto, R. E. Porto, S. Bampi1, and A. A.
Susin, “Design and FPGA Prototyping of a H.264/AVC Main
Profile Decoder for HDTV,” Journal of the Brazilian
Computer Society, vol. 12, pp. 25–36, 2007.

[4] JEDEC, JESD79: Double Data Rate (DDR) SDRAM
Specification, JEDEC Solid State Technology Association,
Virginia, USA, 2003.

[5] A. C. Bonatto, A. B. Soares, A. A. Susin. “DDR SDRAM
Controller IP Designed for Reuse,” In: IP based electronic
system conference & exhibition - IP 08, France. Design and
Reuse, pp. 175-180, 2008.

[6] A. Azevedo, B. Zatt, L. Agostini, and S. Bampi, “MoCHA:
a Bi-Predictive Motion Compensation Hardware for
H.264/AVC Decoder Targeting HDTV,” in Circuits and
Systems, 2007. ISCAS 2007. IEEE International Symposium
on, May 2007, pp. 1617–1620, 2007.

	DEVELOPING a Multichannel High Speed DDR SDRAM Memory
	Controller: A Case Study for H.264/AVC Decoder
	Abstract

