
A KERNEL-BASED APPROACH FOR FACTORING LOGIC FUNCTIONS

1
Vinicius Callegaro,

2
Leomar S. da Rosa Jr,

1
André I. Reis,

1
Renato P. Ribas

{vcallegaro, andreis, rpribas}@inf.ufrgs.br, leomarjr@ufpel.edu.br

1
UFRGS – Instituto de Informática – Nangate/UFRGS Research Lab, Porto Alegre, Brazil
2
UFPel – Instituto de Física e Matemática – Departamento de Informática, Pelotas, Brazil

ABSTRACT

This paper presents a new algorithm for efficient logic

functions factoring. The proposed approach is based on

kernel association, leading to factored forms according to

a given policy cost during the cover step. The

experimental results address the literal count

minimization, showing the feasibility of the proposed

algorithm to manipulate Boolean functions up to 16 input

variables.

1. INTRODUCTION

Factoring Boolean functions is one of the fundamental

operations in logic synthesis. This process consists in

deriving a parenthesized algebraic expression or factored

form representing a given logic function, usually provided

initially in a sum-of-products (SOP) form or product-of-

sums (POS) form. In general, a logic function can present

several factored forms. For example, the SOP

Eq=a*c+c*d+b*d can be factored into the logically

equivalents forms Eq=c*(a+d)+b*d and

Eq=a*c+d*(b+c). The problem of factoring Boolean

functions into more compact logically equivalent forms is

one of the basic operations in the early stages of logic

synthesis. In some design styles (like standard CMOS) the

implementation of a Boolean function corresponds

directly to its factored form. In other words, each literal in

the expression will be converted into a pair of switches to

compose the transistor network that will represent the

Boolean function. Thus, it is desired to achieve the most

economical expression regarding the number of literals in

order to obtain the most reduced transistor network. This

step guarantees, for instance, that final integrated circuit

will not present area overhead [1]. Other benefits of this

optimization step may be the delay and power

consumption minimization [2].

Generating an optimum factored form (a shortest

length expression) is an NP-hard problem. According to

Hachtel and Somenzi [3], the only known optimality

result for factoring (until 1996) is the one presented by

Lawler in 1964 [4]. Heuristic techniques for factoring

achieved high commercial success. This includes the

quick_factor and good_factor algorithms available in SIS

tool [5]. Recently, a factoring method that produces exact

results for read-once factored forms has been proposed

[6] and improved [7]. However, the IROF algorithm [6,7]

fails for functions that cannot be represented by read-once

formulas. The Xfactor algorithm [8,9] is exact for read-

once forms and produces good heuristic solutions for

functions not included in this category. Another method

for exact factoring based on Quantified Boolean

Satisfiability (QBF) [10] was proposed by Yoshida [11].

The Exact_Factor [11] algorithm constructs a special

data structure called eXchange Binary (XB) tree, which

encodes all equations with a given number n of literals.

The XB-tree contains three different classes of

configurable nodes: internal (or operator), exchanger and

leaf (or literal). All classes of nodes can be configured

through configuration variables. The Exact_Factor

algorithm derives a QBF formula representing the XB-

tree and then compares it to the function to be factored by

using a miter [12] structure. If the QBF formula for the

miter is satisfiable, the assignment of the configuration

variables is computed and a factored form with n literals

is derived. The exactness of the algorithm derives from

the fact that it searches for a read-once formula and then

the number of literals is increased by one until a

satisfiable QBF formula is obtained.

This paper presents a factoring algorithm based on

kernel association. The experimental results address the

literal count minimization, showing the feasibility of the

proposed algorithm to manipulate Boolean functions up

to 16 input variables. The main contribution of this work

over the above mentioned heuristic solutions [5,6,7,8,9] is

the ability of delivering shorter length expressions in

terms of literals. When compared to Yoshida`s approach

[11], this algorithm is able to deliver similar solutions

without using QBF. The straightforward process only

consists in generating and combining kernels to feed a

cover table that will provide sub-expressions that could

be used to compose factored forms.

The remaining of this paper is organized as follows.

Section 2 presents the proposed algorithm for factoring.

The results are presented in Section 3. Finally, Section 4

discusses the conclusions and future works.

2. PROPOSED ALGORITHM

The proposed algorithm to achieve factored forms is

divided in a sequence of well defined execution steps.

The next subsections will describe the algorithm and

illustrate its functionality.

2.1. Converting the Input Expression to a SOP Form

The first step consists in converting any Boolean

expression to a SOP form. This is required because the

proposed algorithm uses the product terms from a SOP to

find portions with identical literals that will be

manipulated in the next step. The conversion is done

through a BDD (Binary Decision Diagram) using well

established algorithms [13]. The input Boolean

expression is used to create a BDD structure and,

afterward, all relevant paths on the BDD are extracted to

compose product terms. The SOP is built using sum of

these products.

2.2. Terms Grouping

From a SOP form it is possible to perform the

identification of equal portions between products.

Considering the example of Eq.1, the literal e is common

for the products e*f and e*g*h. In this case a new term

e*(f+g*h) can be built representing the same logical

functionality of those two original products. The same

occurs between products b*c and a*c, where a new term

c*(a+b) can be generated. Notice that the literal i cannot

be grouped to others since it is unique on the Eq.1.

Eq = b*c+a*c+e*f+e*g*h+i (Eq.1)

This step of the algorithm is executed recursively

because when generating new terms other groupings

become possible. Considering the example of Eq.2, on the

first pass the Eq.3 will be returned. Applying the

algorithm recursively in the sub product (c*e + c*f*g +

c*f*h + d*e + d*f*g + d*f*h) from Eq.3, the method will

returns Eq.4. At this point, the optimized found terms will

be used to compose equivalent expressions of the original

one (Eq.2), as illustrated by Eq.5.

Eq = b*c*e+b*c*f*g+b*d*e+b*d*f*g+b*d*f*h (Eq.2)

Eq = b*(c*e+c*f*g+c*f*h+d*e+d*f*g+d*f*h) (Eq.3)

Eq = (f*(h + g) + e)*(d + c) (Eq.4)

Eq = b*((f*(h + g) + e)*(d + c)) (Eq.5)

All set of terms returned by this step will be used in

the sequence. The number of returned terms will depend

on the possibility of grouping different portions of the

input expression.

2.3. Kernels Sharing

In order to perform a fine optimization, all terms

returned by the previously step are analyzed and shared

when it is possible. Taking into account a set of terms

{(a*(c+d)), (b*(c+d)), (c*(a+b)), (d*(a+b))}, each term

is divided in kernels as illustrated in Tab.1.

Tab. 1 – Kernels from a set of terms.

Terms Kernel 1 Kernel 2

1 a*(c+d) a (c+d)

2 b*(c+d) b (c+d)

3 c*(a+b) c (a+b)

4 d*(a+b) d (a+b)

By evaluating the lists of kernels, the algorithm tries

to find equivalent ones that are candidates to be shared

with others. Considering kernel a, for instance, it is

possible to observe that it cannot be shared with other

kernel. However, kernel (c+d) can be shared with another

identical kernel. Thus, the algorithm shares all candidates

and builds new terms. In this example a new term

(a+b)*(c+d) is obtained. The set of new terms generated

during this step is {a*(c+d), b*(c+d), c*(a+b), d*(b+a),

(c+d)*(a+b)}. Notice that if some repeated term is

generated, then it is not added into the set.

2.4. Covering Step

The last step of the proposed algorithm receives all

terms (sets) generated during the steps presented in

subsections 2.1, 2.2 and 2.3. All terms are put together in

order to compose a cover table. After that, a standard

covering algorithm [14] is applied and the best solution is

delivered as the factored expression. It is important to say

that in this paper the number of literals was the cost to be

minimized. Nevertheless, other costs may be considered

to be minimized (like number of products or number of

sums in the expression, for instance).

3. RESULTS

The algorithm described above was implemented in

Java language. In order to validate the proposed method,

the set of Boolean functions present in genlib.44-6 [5]

was used. A total of 3321 logic functions were extracted

from the library to feed the execution flow. In the

sequence, the Boolean expressions were factored, one by

one, using the proposed algorithm. The experiment was

performed in a 1.86Ghz Core 2 Duo processor with 2Gb

memory, CentOS 5.2 Linux operating system and Java

virtual machine v.1.6.0.

Tab. 2 shows some factored expressions obtained with

the proposed approach. It is possible to see that the

method is able to deliver exact forms for read-once

functions, even for input expressions with a reasonable

number of literals.

Tab. 2 – Results of some factored expressions.

Input SOP Factored Expression

!b*!d*!f*!g+!b*!d*!e+!b*!c+!a !(a*(b+c*(d+e*(f+g))))

!b*!g*!h*!i+!b*!d*!f+!b*!d*!e+!b*!c*!f+!b*!c*!e+!a !(a*(b+(c*d+e*f)*(g+h+i)))

!c*!d*!g*!i+!c*!d*!g*!h+!c*!d*!e*!f+!b*!g*!i+!b*!g*!h+

!b*!e*!f+!a
!(a*(b*(c+d)+(e+f)*(g+h*i)))

!g*!h*!m*!n+!g*!h*!k*!l+!g*!h*!i*!j+!e*!f*!m*!n+!e*!f*!

k*!l+!e*!f*!i*!j+!c*!d*!m*!n+!c*!d*!k*!l+!c*!d*!i*!j+!a*!

b

!((a+b)*((c+d)*(e+f)*(g+h)+(i+j)*(k+l)*(m+n)))

!d*!n*!o*!p+!d*!k*!l*!m+!d*!h*!i*!j+!d*!e*!f*!g+!c*!n*!

o*!p+!c*!k*!l*!m+!c*!h*!i*!j+!c*!e*!f*!g+!b*!n*!o*!p+!b

!k!l*!m+!b*!h*!i*!j+!b*!e*!f*!g+!a*!n*!o*!p+!a*!k*!l*!

m+!a*!h*!i*!j+!a*!e*!f*!g

!(a*b*c*d+(e+f+g)*(h+i+j)*(k+l+m)*(n+o+p))

-4

-2

0

2

4

6

8

10

Set of 180 logic functions extracted from NPN-class with 5-input variables

L
ite
ra
l c
o
u
n
t
re
d
u
c
tio
n

Fig. 1 – Literal count reduction over the SIS algorithms.

The average time for factoring Boolean expressions

up to 10 different variables was less than a second. This

average time grows up when more variables are added to

the expression. The average time for factoring

expressions with 16 different variables was around 181

seconds.

In order to evaluate results regarding non-read-once

functions (where the minimum factored form cannot be

expressed with just one literal per variable), a set of 180

logic functions extracted from the NPN-class with 5-input

variables [15] was used. This set of functions was

factored with the proposed method and with quick_factor

and good_factor algorithms available in SIS tool [5].

These two well-established algorithms are used as

reference to compare the quality of factoring methods.

Fig. 1 shows the literal count reduction when

comparing to the quick_factor and good_factor

algorithms. Only 5 factored expressions where obtained

with more literal count when using the proposed

algorithm. For 12 expressions the obtained literal count

was the same. In general, the proposed algorithm

demonstrated a significant improvement over the SIS

algorithms, achieving reductions up to 8 literals. Tab. 3

describes the number of logic functions and the respective

obtained reduction.

The average time for factoring this set of Boolean

functions with the proposed method was 253ms.

Tab. 3 – Number of logic functions and reduced literals.

of Reduced Literals # of Functions

-2 3

-1 2

0 12

1 22

2 27

3 30

4 29

5 19

6 23

7 8

8 5

Total 180

4. CONCLUSIONS AND FUTURE WORKS

This paper presented a new algorithm for efficient

Boolean factoring. Experimental results demonstrated that

the algorithm is feasible to manipulate Boolean

expressions up to 16 input variables in short CPU

execution time. It is able to deliver minimum factored

forms in terms of literal count for read-once functions.

When comparing to the algorithms presented in SIS Tool,

the proposed method is able to delivery expressions with

less literal count.

As future works it is intended to expand the cover

policies in order to allow the algorithm to provide

factored forms concerning minimization of other costs

(like products or sums length).

5. ACKNOWLEDGMENTS

This work has been developed in cooperation with

Nangate Inc., including financial support.

6. REFERENCES

[1] Brayton, R. K. 1987. Factoring Logic Functions.

IBM Journal Res. Develop., vol. 31, n. 2, pp. 187-198.

[2] Iman, S. and Pedram, M. Logic Extraction and

Factorization for Low Power. DAC'95. ACM, New York,

NY, pp. 248 – 253.

[3] Hachtel, G. D. and Somenzi, F. 2000. Logic

Synthesis and Verification Algorithms. 1st. Kluwer

Academic Publishers.

[4] Lawler, E. L. 1964. An Approach to Multilevel

Boolean Minimization. J. ACM 11, 3 (Jul. 1964), pp.

283-295.

[5] Sentovich, E.; Singh, K., Lavagno; L., Moon; C.,

Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.;

Brayton, R.; and Sangiovanni-Vincentelli, A. 1992. SIS:

A system for sequential circuit synthesis. Tech. Rep.

UCB/ERL M92/41. UC Berkeley, Berkeley.

[6] Golumbic, M. C.; Mintz, A.; Rotics, U. 2001.

Factoring and recognition of read-once functions using

cographs and normality. DAC '01. ACM, New York, NY,

pp. 109-114.

[7] Golumbic, M. C.; Mintz, A.; Rotics, U. 2008.

An improvement on the complexity of factoring read-

once Boolean functions. Discrete Appl. Math. Vol. 156,

n. 10 (May. 2008), pp. 1633-1636.

[8] Golumbic, M. C. and Mintz, A. 1999. Factoring

logic functions using graph partitioning. ICCAD '99.

IEEE Press, Piscataway, NJ, pp. 195-199.

[9] Mintz, A. and Golumbic, M. C. 2005. Factoring

boolean functions using graph partitioning. Discrete Appl.

Math. Vol. 149, n. 1-3 (Aug. 2005), pp. 131-153.

[10] Benedetti. M. 2005. sKizzo: a suite to evaluate

and certify QBFs. 20th CADE, LNCS vol. 3632, pp. 369–

376.

[11] Yoshida, H.; Ikeda, M.; Asada, K., 2006. Exact

Minimum Logic Factoring via Quantified Boolean

Satisfiability. ICECS '06. pp. 1065-1068.

[12] Brand, D. 1993. Verification of large

synthesized designs. ICCAD 93. IEEE, Los Alamitos,

CA, pp. 534-537.

[13] Drechsler, R.; Becker, B. Binary Decision

Diagrams: Theory and Implementation. Boston, USA:

Kluwer Academic, 1998.

[14] Wagner, F.R.; Ribas, R.; Reis, A. Fundamentos

de Circuitos Digitais. Porto Alegre: Sagra Luzzatto, 2006.

[15] Ledur, M.; Marranghello, F.; Da Rosa Junior, L.

S.; Reis, A. I.; Ribas, R. P.. Set of Digital Cells

According to Logic Equivalences. In: VII Student Forum

on Microelectronics, 2007, Rio de Janeiro. VII Student

Forum on Microelectronics CDROM. Porto Alegre: SBC,

2007.

