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ABSTRACT 

 

This paper presents a new algorithm for efficient logic 

functions factoring. The proposed approach is based on 

kernel association, leading to factored forms according to 

a given policy cost during the cover step. The 

experimental results address the literal count 

minimization, showing the feasibility of the proposed 

algorithm to manipulate Boolean functions up to 16 input 

variables. 

 

 

1. INTRODUCTION 

 

Factoring Boolean functions is one of the fundamental 

operations in logic synthesis. This process consists in 

deriving a parenthesized algebraic expression or factored 

form representing a given logic function, usually provided 

initially in a sum-of-products (SOP) form or product-of-

sums (POS) form. In general, a logic function can present 

several factored forms. For example, the SOP 

Eq=a*c+c*d+b*d can be factored into the logically 

equivalents forms Eq=c*(a+d)+b*d and 

Eq=a*c+d*(b+c). The problem of factoring Boolean 

functions into more compact logically equivalent forms is 

one of the basic operations in the early stages of logic 

synthesis. In some design styles (like standard CMOS) the 

implementation of a Boolean function corresponds 

directly to its factored form. In other words, each literal in 

the expression will be converted into a pair of switches to 

compose the transistor network that will represent the 

Boolean function. Thus, it is desired to achieve the most 

economical expression regarding the number of literals in 

order to obtain the most reduced transistor network. This 

step guarantees, for instance, that final integrated circuit 

will not present area overhead [1]. Other benefits of this 

optimization step may be the delay and power 

consumption minimization [2]. 

Generating an optimum factored form (a shortest 

length expression) is an NP-hard problem. According to 

Hachtel and Somenzi [3], the only known optimality 

result for factoring (until 1996) is the one presented by 

Lawler in 1964 [4]. Heuristic techniques for factoring 

achieved high commercial success. This includes the 

quick_factor and good_factor algorithms available in SIS 

tool [5]. Recently, a factoring method that produces exact 

results for read-once factored forms has been proposed 

[6] and improved [7]. However, the IROF algorithm [6,7] 

fails for functions that cannot be represented by read-once 

formulas. The Xfactor algorithm [8,9] is exact for read-

once forms and produces good heuristic solutions for 

functions not included in this category.  Another method 

for exact factoring based on Quantified Boolean 

Satisfiability (QBF) [10] was proposed by Yoshida [11]. 

The Exact_Factor [11] algorithm constructs a special 

data structure called eXchange Binary (XB) tree, which 

encodes all equations with a given number n of literals. 

The XB-tree contains three different classes of 

configurable nodes: internal (or operator), exchanger and 

leaf (or literal). All classes of nodes can be configured 

through configuration variables. The Exact_Factor 

algorithm derives a QBF formula representing the XB-

tree and then compares it to the function to be factored by 

using a miter [12] structure. If the QBF formula for the 

miter is satisfiable, the assignment of the configuration 

variables is computed and a factored form with n literals 

is derived. The exactness of the algorithm derives from 

the fact that it searches for a read-once formula and then 

the number of literals is increased by one until a 

satisfiable QBF formula is obtained.  

This paper presents a factoring algorithm based on 

kernel association. The experimental results address the 

literal count minimization, showing the feasibility of the 

proposed algorithm to manipulate Boolean functions up 

to 16 input variables. The main contribution of this work 

over the above mentioned heuristic solutions [5,6,7,8,9] is 

the ability of delivering shorter length expressions in 

terms of literals. When compared to Yoshida`s approach 

[11], this algorithm is able to deliver similar solutions 

without using QBF. The straightforward process only 

consists in generating and combining kernels to feed a 

cover table that will provide sub-expressions that could 

be used to compose factored forms. 

The remaining of this paper is organized as follows. 

Section 2 presents the proposed algorithm for factoring. 

The results are presented in Section 3. Finally, Section 4 

discusses the conclusions and future works. 

 

 

2. PROPOSED ALGORITHM 

 

The proposed algorithm to achieve factored forms is 

divided in a sequence of well defined execution steps. 

The next subsections will describe the algorithm and 

illustrate its functionality. 

 



2.1. Converting the Input Expression to a SOP Form 

 

The first step consists in converting any Boolean 

expression to a SOP form. This is required because the 

proposed algorithm uses the product terms from a SOP to 

find portions with identical literals that will be 

manipulated in the next step. The conversion is done 

through a BDD (Binary Decision Diagram) using well 

established algorithms [13]. The input Boolean 

expression is used to create a BDD structure and, 

afterward, all relevant paths on the BDD are extracted to 

compose product terms. The SOP is built using sum of 

these products. 

 

2.2. Terms Grouping 

 

From a SOP form it is possible to perform the 

identification of equal portions between products. 

Considering the example of Eq.1, the literal e is common 

for the products e*f and e*g*h. In this case a new term 

e*(f+g*h) can be built representing the same logical 

functionality of those two original products. The same 

occurs between products b*c and a*c, where a new term 

c*(a+b) can be generated. Notice that the literal i cannot 

be grouped to others since it is unique on the Eq.1. 

 

Eq = b*c+a*c+e*f+e*g*h+i (Eq.1) 

  

This step of the algorithm is executed recursively 

because when generating new terms other groupings 

become possible. Considering the example of Eq.2, on the 

first pass the Eq.3 will be returned. Applying the 

algorithm recursively in the sub product (c*e + c*f*g + 

c*f*h + d*e + d*f*g + d*f*h) from Eq.3, the method will 

returns Eq.4. At this point, the optimized found terms will 

be used to compose equivalent expressions of the original 

one (Eq.2), as illustrated by Eq.5. 

 

Eq = b*c*e+b*c*f*g+b*d*e+b*d*f*g+b*d*f*h (Eq.2) 

Eq = b*(c*e+c*f*g+c*f*h+d*e+d*f*g+d*f*h) (Eq.3) 

Eq = (f*(h + g) + e)*(d + c) (Eq.4) 

Eq = b*((f*(h + g) + e)*(d + c)) (Eq.5) 

 

All set of terms returned by this step will be used in 

the sequence. The number of returned terms will depend 

on the possibility of grouping different portions of the 

input expression. 

 

2.3. Kernels Sharing 

 

In order to perform a fine optimization, all terms 

returned by the previously step are analyzed and shared 

when it is possible.  Taking into account a set of terms 

{(a*(c+d)), (b*(c+d)), (c*(a+b)), (d*(a+b))}, each term 

is divided in kernels as illustrated in Tab.1. 

 

Tab. 1 – Kernels from a set of terms. 

# Terms Kernel 1 Kernel 2 

1 a*(c+d) a (c+d) 

2 b*(c+d) b (c+d) 

3 c*(a+b) c (a+b) 

4 d*(a+b) d (a+b) 

  

By evaluating the lists of kernels, the algorithm tries 

to find equivalent ones that are candidates to be shared 

with others. Considering kernel a, for instance, it is 

possible to observe that it cannot be shared with other 

kernel. However, kernel (c+d) can be shared with another 

identical kernel. Thus, the algorithm shares all candidates 

and builds new terms. In this example a new term 

(a+b)*(c+d) is obtained. The set of new terms generated 

during this step is {a*(c+d), b*(c+d), c*(a+b), d*(b+a), 

(c+d)*(a+b)}. Notice that if some repeated term is 

generated, then it is not added into the set. 

 

2.4. Covering Step 

 

The last step of the proposed algorithm receives all 

terms (sets) generated during the steps presented in 

subsections 2.1, 2.2 and 2.3. All terms are put together in 

order to compose a cover table. After that, a standard 

covering algorithm [14] is applied and the best solution is 

delivered as the factored expression. It is important to say 

that in this paper the number of literals was the cost to be 

minimized. Nevertheless, other costs may be considered 

to be minimized (like number of products or number of 

sums in the expression, for instance).  

 

 

3. RESULTS 

 

The algorithm described above was implemented in 

Java language. In order to validate the proposed method, 

the set of Boolean functions present in genlib.44-6 [5] 

was used. A total of 3321 logic functions were extracted 

from the library to feed the execution flow. In the 

sequence, the Boolean expressions were factored, one by 

one, using the proposed algorithm. The experiment was 

performed in a 1.86Ghz Core 2 Duo processor with 2Gb 

memory, CentOS 5.2 Linux operating system and Java 

virtual machine v.1.6.0. 

Tab. 2 shows some factored expressions obtained with 

the proposed approach. It is possible to see that the 

method is able to deliver exact forms for read-once 

functions, even for input expressions with a reasonable 

number of literals. 

 



Tab. 2 – Results of some factored expressions. 

Input SOP Factored Expression 

!b*!d*!f*!g+!b*!d*!e+!b*!c+!a !(a*(b+c*(d+e*(f+g)))) 

!b*!g*!h*!i+!b*!d*!f+!b*!d*!e+!b*!c*!f+!b*!c*!e+!a !(a*(b+(c*d+e*f)*(g+h+i))) 

!c*!d*!g*!i+!c*!d*!g*!h+!c*!d*!e*!f+!b*!g*!i+!b*!g*!h+ 

!b*!e*!f+!a 
!(a*(b*(c+d)+(e+f)*(g+h*i))) 

!g*!h*!m*!n+!g*!h*!k*!l+!g*!h*!i*!j+!e*!f*!m*!n+!e*!f*!

k*!l+!e*!f*!i*!j+!c*!d*!m*!n+!c*!d*!k*!l+!c*!d*!i*!j+!a*!

b 

!((a+b)*((c+d)*(e+f)*(g+h)+(i+j)*(k+l)*(m+n))) 

!d*!n*!o*!p+!d*!k*!l*!m+!d*!h*!i*!j+!d*!e*!f*!g+!c*!n*!

o*!p+!c*!k*!l*!m+!c*!h*!i*!j+!c*!e*!f*!g+!b*!n*!o*!p+!b

*!k*!l*!m+!b*!h*!i*!j+!b*!e*!f*!g+!a*!n*!o*!p+!a*!k*!l*!

m+!a*!h*!i*!j+!a*!e*!f*!g 

!(a*b*c*d+(e+f+g)*(h+i+j)*(k+l+m)*(n+o+p)) 
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Fig. 1 – Literal count reduction over the SIS algorithms. 

 

 

The average time for factoring Boolean expressions 

up to 10 different variables was less than a second. This 

average time grows up when more variables are added to 

the expression. The average time for factoring 

expressions with 16 different variables was around 181 

seconds. 

In order to evaluate results regarding non-read-once 

functions (where the minimum factored form cannot be 

expressed with just one literal per variable), a set of 180 

logic functions extracted from the NPN-class with 5-input 

variables [15] was used. This set of functions was 

factored with the proposed method and with quick_factor 

and good_factor algorithms available in SIS tool [5]. 

These two well-established algorithms are used as 

reference to compare the quality of factoring methods.  

Fig. 1 shows the literal count reduction when 

comparing to the quick_factor and good_factor 

algorithms. Only 5 factored expressions where obtained 

with more literal count when using the proposed 

algorithm. For 12 expressions the obtained literal count 

was the same. In general, the proposed algorithm 

demonstrated a significant improvement over the SIS 

algorithms, achieving reductions up to 8 literals. Tab. 3 

describes the number of logic functions and the respective 

obtained reduction.  

The average time for factoring this set of Boolean 

functions with the proposed method was 253ms. 

 

Tab. 3 – Number of  logic functions and reduced literals. 

# of Reduced Literals # of Functions 

-2 3 

-1 2 

0 12 

1 22 

2 27 

3 30 

4 29 

5 19 

6 23 

7 8 

8 5 

Total 180 

 

 



4. CONCLUSIONS AND FUTURE WORKS 

  

This paper presented a new algorithm for efficient 

Boolean factoring. Experimental results demonstrated that 

the algorithm is feasible to manipulate Boolean 

expressions up to 16 input variables in short CPU 

execution time. It is able to deliver minimum factored 

forms in terms of literal count for read-once functions. 

When comparing to the algorithms presented in SIS Tool, 

the proposed method is able to delivery expressions with 

less literal count.  

As future works it is intended to expand the cover 

policies in order to allow the algorithm to provide 

factored forms concerning minimization of other costs 

(like products or sums length).  
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