
FPGA DESIGN OF A MLP ARTIFICIAL NEURAL NETWORK ARCHITECTURE

Antonyus Ferreira, Edna Barros, Teresa Ludermir
{apaf, ensb, tbl}@cin.ufpe.br

Informatics Center, Federal University of Pernambuco, Brazil

ABSTRACT

This work presents the challenges and proposed
solutions on implementing a FPGA based architecture of
a Multilayer Perceptron (MLP) Artificial Neural Network
(ANN). Choices like switching between to use either
float point arithmetic or fixed point are mentioned and
comparisons with other architectures as well. The scope
of this paper does not include the ANNs learning phase.

1. INTRODUCTION

Nowadays several embedded devices include some
functionality based on artificial intelligence (AI)
techniques. And some embedded systems’ requirements
conflicts with AI features like parallel processing. For
example to introduce an ANN in a digital camera with
classical implementation of ANNs or the power
consumption would raise either the response would take
too much time to be computed. And in the other hand
hardware implementations of these techniques could
bring more value to this class of products. In this purpose
are aligned the works of [2], [7], [8], [9] e [10].

Following those motivations we describe in chapters 2
and 3 some important concepts about ANNs and FPGA
respectively. In chapter 4 are presented the
implementation flow and some choices taken on the
design of implementing MLP ANNs in FPGA. Results
come in chapter 5. Chapter 6 we compare our
implementation with two other works.

2. MLP ARTIFICIAL NEURAL NETWORKS

All the animals’ brains are compounded by billions of
cells interconnected in a giant net. And ANNs are
computational models whose organization and
architecture are inspired in animals’ brains structure. This
model inherits from biological model its parallel and
distributed feature.

ANNs can be found in many areas like signal
processing, medical image analysis, diagnostic systems
and time series forecasting. Some desired properties [1]
of ANNs are:

a. Learning through examples
-Non parametric statistical inference

b. Adaptability
c. Generalization
d. Fault tolerance
e. Fast implementation

2.1 Artificial Neuron

An artificial neuron is the unit of the neural networks
architecture. In the neurons’ structure can be found:

a. An input set that receives neurons’ input signals;
b. A synaptic set whose intensity is represented by an
associated weight;
c. An activation function that compares inputs and
their synaptic with the threshold function to define
neuron’s output.

In the following figure [2] each Wi represents the
weights associated with each Xi and Φ is the activation
function. The result of the synaptic is given by the inner
product (u) of the inputs vector by the weight vector and
the output by the computation of Φ(u).

Figure 1 Artificial neuron

Some activation functions used are:
a. Step function;

Φ(u) = 1 if u > 0, Φ(u) = 0, otherwise
b. Ramp function

Φ(u) = max{0.0, min{1.0, u + 0.5}}
c. Sigmoid function

Φ(u) = a /{ 1 + exp(−bu) }

2.2 Back-Propagation algorithm

It is the most known training algorithm of ANNs and
is based on supervised learning (pairs input – desired
output to adjust the net’s weights). The training has two
phases called forward e backward.

In the first phase the inputs are computed through the
neurons layers and its outputs are compared with the
desired output. And in the backward phase in each neuron
is made an adjustment to minimize the output error.

3. FPGA: A SHORT INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are
compounded by a matrix of logic blocks that can be
connected ones to each others to implement complex
logic expressions [5]. The user design is accomplished

specifying simple logic expressions to each cell and
selectiveness closing connections in the block matrix. See
picture above.

Figure 2 FPGA architecture

Nowadays, FPGAs are used for fast digital circuit
prototyping. And so these systems could be produced in
large scale as ASICs.

4. FPGA DESIGN OF MLP RNAS

4.1 Floating point Vs Fixed-point

The float point representation is similar to the
scientific notation where the number is multiplied by its
base raised by an exponent. The great benefit of
representing a number in the float point pattern (IEEE
754) is to provide several precision degrees based on the
used scale.

In other side, the fixed-point notation defines a
specific radix and there is a fixed number of bits to
represent the integer part and the fractionary part. To
implement operations in this representation is as easy and
fast as manipulate integer numbers. A comparison with
the two approaches could be seen in the chart bellow.

Floating point Fixed-point
Accuracy Product’s final cost

Dynamic Range Speed
Shorter design time

Due to add more fidelity to the original model of
ANNs we decided to use float point arithmetic.

This choice allows working with number of different
magnitudes and guarantees that the originals ANNs
learning algorithms could be used without any problems.

Altera provides float point components in its IP
library. We used one adder (ALTFP_ADD_SUB), one
multiplier (ALTFP_MULT), one comparator
(ALTFP_COMPARE) all of them following single
precision IEEE 754 pattern and using VHDL (as well in
entire project).

4.2 Activation function’s approximation

Although direct implementation of the sigmoid is
suitable, it is requires excessive logic use. We are
intending to use a more intelligent approach than to
implement a non accurate look up table.

The first alternative defines the functions:

The method iteratively computes the output within

about 4 steps as described by [13]. It represents an
approximation mean error of 1.4539e-017 and a max
error of 0.0194 in the interval [-5,5].

A second method presents a linear by parts
approximation [12]:

Tabela 1 Approximation 2

The disadvantage of this approach is it is not smooth.
And a activation function must be differentiable to allow
the application of an descendent gradient learning
algorithm. Although this method seems to be inaccurate it
results in a mean error of 8.9214e-018 and a max error of
0.0189

The last approach tested is classified as a quadratic
defined by parts approximation. Zhang, Vassiliadis e
Delgado–Frias [11] propose a method using only one
multiplication.

This approximation represents a smooth and fast
method. Its mean error is 8.5910e-018 and max error
0.0215.

In the figure 3 we can see visually how each
approximation behavior. The methods are in order from
left to right.

Method Mean error max error smooth fast
1º order iterative 1.4539e-017 0.0194 yes no
1º order by parts 8.9214e-018 0.0189 no yes
2º order by parts 8.5910e-018 0.0215 yes yes

The third method has a higher max error but it is
smooth and easily implemented with little logic
consumption so we decide to use it.

4.3 Neuron’s implementation

We have chosen how neuron function activation will
be computed. Now it is left to define the propagation rule
of the neuron. Due to area considerations, only one float
point multiplier and adder were used. Nevertheless some
parallelism could be introduced in the calculi of the sum
of products as shown on the next chart.

Figure 3 Sigmoid approximations (real sigmoid in blue)

Tabela 2 Parallelism on computing the net

Inputs function Operations

2 X1 x W1 + X2 x W2 + W0 X X +
+

3 X1xW1 + X2xW2 + X3xW3 + W0 X X X +
+ +

4 X1xW1 + X2xW2 + X3xW3 +
X4xW4 +W0

X X X X +
+ + +

Where Xi is an input, Wi is a weight associated to
each input. The operations column vertically shows the
time when each computation is done. So we can do one
sum and multiplication at the same time.

The component neuron with e 2 inputs is like this:

Figure 4 Two inputs Neuron

Above the component can be viewed an editable chart
where the user might enter the weight of each input.
Therefore the user can use the component with no
knowledge about its implementation.

4.4 Sigmoid implementation

Following the steps we computed the response of
each neuron:

1. Compare |net| > 4 (out of approximation range)
a. If true then saturate output to 0 or 1.
b. else step 2

2. Right shift net’s exponent (multiply by 2-2) and
reset the signal bit

3. Compute 1 - result2 (result of step 2)
4. Then raise result3 by 2
5. Right shift the result4 (multiply by 2-1)
6. If net < 0 then done

else do 1 – result5

4.5 ANN’s implementation

To implement a neural network with our neuron users
only need to instantiate the neurons and connect them.

Additionally a control module determines the
activation of each neurons layer. Two implementations of
the controller were tested, one sequential and another
allowing the neurons layers compute at the same time
taking hands of the parallelism of the model.

5. RESULTS

We used the diabetes problem to validate our
architecture. The dimension of the problem was reduced
from eight to five and with up to 384 examples vectors.
So the net has 5 input neurons, 2 intermediate neurons in
the hidden layer and 2 output neurons (5:2:2).

First of all we had to compare the performance of the
hardware implementation with the software
implementation in C++. In the software execution we
used an AMD Athlon 64 3200+ 2.20GHz computer with
512 MB of memory.

The ANN in FPGA (sequential implementation)
computed all the 384 examples within 299,45μs versus
23ms in software i.e. 76,8 times faster. The parallelized
version in hardware spent 165,38μs which is 139 times
faster than software implementation.

The resource utilization were compatible with the
choice of using float point. We used an altera STRATIX
II FPGA (EP2S60F672C5ES) speed grade -5. The entire
neural network in the study case (with the test structure)
totalized 6.692 Combinational ALUTs, 5.447 Registers,
114.688 memory blocks (5%) e 32 9-Bit DSP blocks
(11%).

6. RELATED WORK

6.1 FPGA implementation of a face detector using
neural networks [3]

Yongsoon Lee e Seok-Bum Ko in this work used
floating point arithmetic due to same causes that guided
us in our choice and implemented an MLP ANN. They
chose the follow approximation of the sigmoid that is
clearly slower than ours.

They obtained a fmax of 38MHz versus 160MHz of
our model. But this work makes evident RNA utilization
in real time applications.

6.2 FPGA Implementation of a Neural Network
for a Real-Time Hand Tracking System [16]

The authors implemented the neuron with fixed point
adders and multipliers. They differ using hyperbolic
tangent as the activation function and its approximation
using a look up table obviously targeting meet
performance requirements. But the look up table use
only 15 levels as figure 6 shows.

Although the use of float point neuron our mean
performance was higher than that indicated by the
authors: 43,07ns (our) versus 71ns.

Figure 5 look up table approximation for tanh

7. CONCLUSIONS AND FUTURE WORKS

Comparatively we demonstrate that our choices were
efficient on designing ANNs in FPGA. Although the
learning phase of the ANNs was not in the scope of this
work we were cautious on thinking of a future
implementation with learning phase.

We intend to build an ANN code generator in a HDL
language. So the designer does not need to know
anything about ANNs and just use them.

Another future work is to implement more ANN
types, including for example RBF and Kohonen networks

8. REFERENCES

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title,”
Journal, Publisher, Location, pp. 1-10, Date.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title,
Publisher, Location, Date.

[1] Braga, A. P.; Carvalho, A. P. L. F.; Ludermir, T. B. Redes
Neurais Artificiais, LTC, 2007.

[2] Omondi, A. R. ; Rajapakse, J. C. ; Bajger, M. FPGA
Neurocomputers. In: Omondi, A. R.; Rajapakse, J. C. (eds)
FPGA Implementations of Neural Networks. Springer-Verlag,
2006. p. 37-56.
[3] Lee, Y.; Ko, S. B. FPGA implementation of a face detector
using neural networks, IEEE CCECE/CCGEI, 2006.

[4] Krips. M, Lammert. T, Kummert. A. FPGA implementation
of a neural network for a real-time hand tracking system. In:
Proceedings of the First IEEE International Workshop, 2002. p.
313-317.

[5] Azhar, M. A. H. B.; Dimond, K. R. Design of an FPGA
Based Adaptive Neural Controller For Intelligent Robot
Navigation. In: Proceedings of the Euromicro Symposium on
Digital System Design, 2002.

[6] Zeidman, B. An Introduction to FPGA Design, Embedded
Systems Conference, 1999.

[7] Bernard, G. FPNA: Concepts and Properties. In: Omondi, A.
R.; Rajapakse, J. C. (eds) FPGA Implementations of Neural
Networks. Springer-Verlag, 2006. p. 63-101.

[8] Canas, A.; et al FPGA Implementation of a Fully and
Partially Connected MLP. In: Omondi, A. R.; Rajapakse, J. C.
(eds) FPGA Implementations of Neural Net-works. Springer-
Verlag, 2006. p. 271-296.

[9] Girau, B. FPNA: Applications and implementations. In:
Omondi, A. R.; Raja-pakse, J. C. (eds) FPGA Implementations
of Neural Networks. Springer-Verlag, 2006. p. 103-136.

[10] Girones, R. G.; Agundis, A. R. FPGA Implementation of
Non-Linear Predictors. In: Omondi, A. R.; Rajapakse, J. C.
(eds) FPGA Implementations of Neural Net-works. Springer-
Verlag, 2006. p. 297-323.

[11] Zhang, M.; Vassiliadis, S.; Delgago–Frias, J.G. Sigmoid
generators for neural computing using piecewise
approximations, IEEE Trans. Comput., 1996, p. 1045–1049

[12] Amin, H.; Curtis, K.M.; Hayes–Gill, B.R. Piecewise linear
approximation applied to nonlinear function of a neural
network, IEEE Proc. Circuits - Devices Sys., 1997 p. 313–317

[13] Basterretxea, K.; Tarela, J. M.; Del Campo, I.
Approximation of sigmoid func-tion and the derivative for
hardware implementation of artificial neurons, IEEE Proc.-
Circuits Devices Syst., Vol. 151, 2004.

[14] IEEE computer society: IEEE Standard 754 for Binary
Floating-Point Arithme-tic, 1985.

[15] Applet da rede neural XOR, disponível em:
http://delfin.unideb.hu/~bl0021/xordemo/xordemo.html, último
acesso em 23/11/2008.

[16] Krips, M.; Lammert, T.; Kummert, A. FPGA
Implementation of a Neural Net-work for a Real-Time Hand
Tracking System. Proceedings of the First IEEE Inter-national
Workshop on Electronic Design, 2002.

