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ABSTRACT

This  work  presents  the  challenges  and  proposed 
solutions on implementing a FPGA based architecture of 
a Multilayer Perceptron (MLP) Artificial Neural Network 
(ANN).  Choices  like  switching  between  to  use  either 
float  point  arithmetic  or fixed point  are mentioned and 
comparisons with other architectures as well. The scope 
of this paper does not include the ANNs learning phase.  

1. INTRODUCTION

Nowadays  several  embedded  devices  include  some 
functionality  based  on  artificial  intelligence  (AI) 
techniques. And some embedded systems’ requirements 
conflicts  with  AI  features  like  parallel  processing.  For 
example to introduce an ANN in a digital camera with 
classical  implementation  of  ANNs  or  the  power 
consumption would raise either the response would take 
too much time to be computed.  And in the other  hand 
hardware  implementations  of  these  techniques  could 
bring more value to this class of products.  In this purpose 
are aligned the works of [2], [7], [8], [9] e [10]. 

Following those motivations we describe in chapters 2 
and 3 some important concepts about ANNs and FPGA 
respectively.  In  chapter  4  are  presented  the 
implementation  flow  and  some  choices  taken  on  the 
design of  implementing MLP ANNs in FPGA. Results 
come  in  chapter  5.  Chapter  6  we  compare  our 
implementation with two other works. 

2. MLP ARTIFICIAL NEURAL NETWORKS

All the animals’ brains are compounded by billions of 
cells  interconnected  in  a  giant  net.  And  ANNs  are 
computational  models  whose  organization  and 
architecture are inspired in animals’ brains structure. This 
model  inherits  from  biological  model  its  parallel  and 
distributed feature. 

ANNs  can  be  found  in  many  areas  like  signal 
processing,  medical  image  analysis,  diagnostic  systems 
and time series forecasting. Some desired properties [1] 
of ANNs are:

a. Learning through examples 
-Non parametric statistical inference 

b. Adaptability 
c. Generalization 
d. Fault tolerance 
e. Fast implementation

2.1 Artificial Neuron 

An artificial neuron is the unit of the neural networks 
architecture. In the neurons’ structure can be found:

a. An input set that receives neurons’ input signals;
b. A synaptic set whose intensity is represented by an 
associated weight;
c.  An  activation  function  that  compares  inputs  and 
their  synaptic  with  the  threshold  function  to  define 
neuron’s output.

In  the  following  figure  [2]  each  Wi represents  the 
weights associated with each  Xi and  Φ is the activation 
function. The result of the synaptic is given by the inner 
product (u) of the inputs vector by the weight vector and 
the output by the computation of Φ(u).

Figure 1 Artificial neuron

Some activation functions used are:
a. Step function;

Φ(u) = 1  if u > 0,  Φ(u) = 0, otherwise
b. Ramp function

Φ(u) = max{0.0, min{1.0, u + 0.5}}
c. Sigmoid function 

Φ(u) = a /{ 1 + exp(−bu) }

2.2 Back-Propagation algorithm 

It is the most known training algorithm of ANNs and 
is  based  on  supervised  learning  (pairs  input  –  desired 
output to adjust the net’s weights). The training has two 
phases called forward e backward. 

In the first phase the inputs are computed through the 
neurons  layers  and  its  outputs  are  compared  with  the 
desired output. And in the backward phase in each neuron 
is made an adjustment to minimize the output error.

3. FPGA: A SHORT INTRODUCTION

Field  Programmable  Gate  Arrays  (FPGAs)  are 
compounded  by  a  matrix  of  logic  blocks  that  can  be 
connected  ones  to  each  others  to  implement  complex 
logic  expressions [5].  The  user  design  is  accomplished 



specifying  simple  logic  expressions  to  each  cell  and 
selectiveness closing connections in the block matrix. See 
picture above.

Figure 2 FPGA architecture

Nowadays,  FPGAs  are  used  for  fast  digital  circuit 
prototyping. And so these systems could be produced in 
large scale as ASICs. 

4. FPGA DESIGN OF MLP RNAS

4.1 Floating point Vs Fixed-point

The  float  point  representation  is  similar  to  the 
scientific notation where the number is multiplied by its 
base  raised  by  an  exponent.  The  great  benefit  of 
representing a number  in  the float  point  pattern  (IEEE 
754) is to provide several precision degrees based on the 
used scale. 

In  other  side,  the  fixed-point  notation  defines  a 
specific  radix  and  there  is  a  fixed  number  of  bits  to 
represent  the  integer  part  and  the  fractionary  part.  To 
implement operations in this representation is as easy and 
fast as manipulate integer numbers.  A comparison with 
the two approaches could be seen in the chart bellow.

Floating point Fixed-point
Accuracy Product’s final cost

Dynamic Range Speed
Shorter design time

Due  to  add  more  fidelity  to  the  original  model  of 
ANNs we decided to use float point arithmetic.

This choice allows working with number of different 
magnitudes  and  guarantees  that  the  originals  ANNs 
learning algorithms could be used without any problems.

Altera  provides  float  point  components  in  its  IP 
library.  We used  one  adder  (ALTFP_ADD_SUB),  one 
multiplier  (ALTFP_MULT),  one  comparator 
(ALTFP_COMPARE)  all  of  them  following  single 
precision IEEE 754 pattern and using VHDL (as well in 
entire project). 

4.2 Activation function’s approximation 

Although  direct  implementation  of  the  sigmoid  is 
suitable,  it  is  requires  excessive  logic  use.  We  are 
intending  to  use  a  more  intelligent  approach  than  to 
implement a non accurate look up table. 

The first alternative defines the functions:

 
The  method  iteratively  computes  the  output  within 

about  4  steps  as  described  by  [13].  It  represents  an 
approximation  mean  error  of  1.4539e-017  and  a  max 
error of 0.0194 in the interval [-5,5].

A  second  method  presents  a  linear  by  parts 
approximation [12]:

Tabela 1 Approximation 2

The disadvantage of this approach is it is not smooth. 
And a activation function must be differentiable to allow 
the  application  of  an  descendent  gradient  learning 
algorithm. Although this method seems to be inaccurate it 
results in a mean error of 8.9214e-018 and a max error of 
0.0189 

The last  approach  tested is  classified as  a quadratic 
defined  by  parts  approximation.  Zhang,  Vassiliadis  e 
Delgado–Frias  [11]  propose  a  method  using  only  one 
multiplication. 

This  approximation  represents  a  smooth  and  fast 
method.  Its  mean  error  is  8.5910e-018  and  max  error 
0.0215.

In  the  figure  3  we  can  see  visually  how  each 
approximation behavior. The methods are in order from 
left to right.

Method Mean error max error smooth fast
1º order iterative 1.4539e-017 0.0194 yes no
1º order by parts 8.9214e-018 0.0189 no yes
2º order by parts 8.5910e-018 0.0215 yes yes

The  third  method  has  a  higher  max  error  but  it  is 
smooth  and  easily  implemented  with  little  logic 
consumption so we decide to use it. 

4.3 Neuron’s implementation 

We have chosen how neuron function activation will 
be computed. Now it is left to define the propagation rule 
of the neuron. Due to area considerations, only one float 
point multiplier and adder were used. Nevertheless some 
parallelism could be introduced in the calculi of the sum 
of products as shown on the next chart.



Figure 3 Sigmoid approximations (real sigmoid in blue)

Tabela 2 Parallelism on computing the net

Inputs function Operations

2 X1 x W1 + X2 x W2 + W0 X X +
+

3 X1xW1 + X2xW2 + X3xW3 + W0 X X X +
+ +

4 X1xW1  +  X2xW2  +  X3xW3  +
X4xW4 +W0

X X X X +
+  +  +

Where Xi is  an input,  Wi is  a weight  associated to 
each input. The operations column vertically shows the 
time when each computation is done. So we can do one 
sum and multiplication at the same time.

The component neuron with e 2 inputs is like this:

Figure 4 Two inputs Neuron

Above the component can be viewed an editable chart 
where  the  user  might  enter  the  weight  of  each  input. 
Therefore  the  user  can  use  the  component  with  no 
knowledge about its implementation.

4.4 Sigmoid implementation

Following  the  steps  we  computed  the  response  of 
each neuron:

1.  Compare  |net|  > 4 (out  of  approximation range)
a. If true then saturate output to 0 or 1.
b. else step 2

2.  Right  shift  net’s  exponent  (multiply  by  2-2)  and 
reset the signal bit

3. Compute 1 - result2 (result of step 2)
4. Then raise result3 by 2
5. Right shift the result4 (multiply by 2-1)
6. If net < 0 then done

else  do 1 – result5
 
4.5 ANN’s implementation 

To implement a neural network with our neuron users 
only need to instantiate the neurons and connect them. 

Additionally  a  control  module  determines  the 
activation of each neurons layer. Two implementations of 
the  controller  were  tested,  one  sequential  and  another 
allowing the  neurons  layers  compute  at  the  same time 
taking hands of the parallelism of the model.

5. RESULTS

We  used  the  diabetes  problem  to  validate  our 
architecture. The dimension of the problem was reduced 
from eight to five and with up to 384 examples vectors. 
So the net has 5 input neurons, 2 intermediate neurons in 
the hidden layer and 2 output neurons (5:2:2). 

First of all we had to compare the performance of the 
hardware  implementation  with  the  software 
implementation  in  C++.  In  the  software  execution  we 
used an AMD Athlon 64 3200+ 2.20GHz computer with 
512 MB of memory. 

The  ANN  in  FPGA  (sequential  implementation) 
computed all  the 384 examples within 299,45μs versus 
23ms in software i.e. 76,8 times faster. The parallelized 
version in hardware spent 165,38μs which is 139 times 
faster than software implementation. 

The  resource  utilization  were  compatible  with  the 
choice of using float point. We used an altera STRATIX 
II FPGA (EP2S60F672C5ES) speed grade -5. The entire 
neural network in the study case (with the test structure) 
totalized 6.692 Combinational ALUTs, 5.447 Registers, 
114.688  memory  blocks  (5%)  e  32  9-Bit  DSP  blocks 
(11%).

  
6. RELATED WORK

6.1  FPGA  implementation  of  a  face  detector  using 
neural networks [3]

Yongsoon  Lee  e  Seok-Bum  Ko  in  this  work  used 
floating point arithmetic due to same causes that guided 
us in our choice and implemented an MLP ANN. They 
chose  the  follow approximation  of  the  sigmoid  that  is 
clearly slower than ours. 



They obtained a fmax of 38MHz versus 160MHz of 
our model. But this work makes evident RNA utilization 
in real time applications.

6.2 FPGA Implementation of a Neural Network 
for a Real-Time Hand Tracking System [16]

The authors implemented the neuron with fixed point 
adders  and  multipliers.  They  differ  using  hyperbolic 
tangent as the activation function and its approximation 
using  a  look  up  table  obviously  targeting  meet 
performance  requirements.   But  the  look  up  table  use 
only 15 levels as figure 6 shows. 

Although  the  use  of  float  point  neuron  our  mean 
performance  was  higher  than  that  indicated  by  the 
authors: 43,07ns (our) versus 71ns.

Figure 5 look up table approximation for  tanh

7. CONCLUSIONS AND FUTURE WORKS

Comparatively we demonstrate that our choices were 
efficient  on  designing  ANNs  in  FPGA.  Although  the 
learning phase of the ANNs was not in the scope of this 
work  we  were  cautious  on  thinking  of  a  future 
implementation with learning phase. 

We intend to build an ANN code generator in a HDL 
language.  So  the  designer  does  not  need  to  know 
anything about ANNs and just use them.

Another  future  work  is  to  implement  more  ANN 
types, including for example RBF and Kohonen networks 
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