
A FPGA-based Network stack with a reduced number of
layers

Josue P. J. de Freitas,Gustavo F. Dessbesell,Joao Baptista dos Santos Martins
UNIVERSIDADE FEDERAL DE SANTA MARIA (UFSM)

josue.freitas@mail.ufsm.br,gfd@mail.ufsm.br,batista@inf.ufsm.br

ABSTRACT
This paper presents a proposal regarding a Network stack in
FPGA with reduced number of layers. The network stack
uses is composed by a Gigabit Ethernet Mac, connected to
an Application Layer by a Middle Layer. The Middle layer
implements some network features, like connection manage-
ment and buffering. The Middle layer aim to be responsible
for all network processing this way letting the Application
layer free to process application information. Our proposed
network node show a maximum 1311.63 Mb/s full-duplex
throughput. Besides, considering just the internal 32 bits
data bus and operation frequency of 125 MHz it’s possible to
reach around 8000Mb/s of full-duplex internal throughput.
Our architecture presents a throughput 4.7 times higher in
the best case (2.5 times higher on average) when compared
to a software implementation running over personal com-
puter. Also, comparing with an embedded network stack our
architecture, using a microprocessor in Application layer,
shows in the best case 44 times more throughput.

1. INTRODUCTION
The available bandwidth is increasing very quickly nowa-
days. According to Gilder’s law [4] the available bandwidth
doubles every six months in average. Considering Moore’s
law, which says that the number of transistors in an inte-
grated circuit doubles approximately every two years.

A common network stack, developed in operating system
software, shows a ratio around of 1 MHz to 1 Mb/s of full-
duplex throughput [7] [6]. On an RFC regarding RDMA
(Remote Direct Memory Access) [6] is shown that, in 2001,
a 1.2 GHz Athlon could handle a maximmum theoretical
2.7Gb/s of full-duplex throughput when using 100% of CPU
capacity, i.e. the machine have too few CPU cycles to pro-
cess user applications if we consider the Gigabit Ethernet
technology available at that time. Copy through memory
is considered a huge consumer of CPU cycles in software
network stack implementations [2], this fact stimulated the
development of hardware based network stacks and industry

standard network stacks with a reduced number of layers [5]
[1].

Although the relation between general purpose processor
and available bandwidth wasn’t a huge problem in the past,
this problem is increasing since network bandwidth is in-
creasing much faster than processors capacity, even con-
sidering the multi-core architectures. The graphic in fig-
ure 1 shows processors frequency and the available band-
width through the years. The graphic was assembled based
on Intel processors released through the years available at
http://www.intel.com/pressroom/kits/quickreffam.htm and
Ethernet 802.3 standards releasing dates, and projections,
found at http://www.ieee802.org/. In this graphic is pos-
sible to notice that this relation wasn’t problematic before
1998, when Gigabit Ethernet standard was released. After
this year the available bandwidth kept steady above proces-
sors capacity and it might keep this way in a long future
since 100Gb/s Ethernet, 802.3ba standard, is already in ex-
perimental state in 2009.

Considering that embedded system use to have simple mi-
croprocessors, with few cache memory and lower frequency,
this even more significant. So, this paper addresses these
issues by proposing an FPGA-based network stack with a
Middle layer responsible with network processing connected
to a Gigabit Ethernet MAC and to an Application layer, in
order to avoid the microprocessor getting involved in net-
work stack processing.

The paper is organized as follows: Section 2 explains the
network node architecture and relevant information. Section
3 presents results where our network stack is compared with
pure software running over a PC and with an embedded an
embedded TCP/IP network stack, lwIP[3]. Section 4 shows
conclusions.

2. PROPOSED NETWORK NODE ARCHI-
TECTURE

The Network node is composed by three main parts: a Gi-
gabit Ethernet Mac (Gemac), a Middle layer, and an Appli-
cation 2 . The Gemac block communicates with the buffer
and Receiver and Sender blocks read and write data from
and to the buffer. The Middle layer, situated between Ap-
plication and Gemac, is where some network features are
implemented. Furthermore, the Application is where data
is processed, it communicates with the Middle layer by writ-
ting and reading to and from Sender and Receiver blocks.



Figure 1: Available bandwidth versus Processors frequency

Figure 2: Proposal Network Node Architecture

A buffer is needed in order to support different applications
that may have very different time to process the incoming
data, this way avoiding discarding frames.

The Middle layer is composed by the following blocks: Sender,
Receiver, Connection Manager and Buffer. The Receiver
block checks some values in the control header and decides
whether the inbound frame is correct or not. The control
header is composed by 5 bytes after the Length/Type field
of the Ethernet Frame and is shown in Figure 3. The fields
First, Ack, Action, UlApp, Last, Seq were grouped into a
single byte to make the bit manipulation easier in software,
allowing the use of an unsigned char type to represent them.

• CID: Connection IDentification. An eight bit number
that is chosen by the host that starts the communica-
tion;

• First: A ’1’ value indicates the communication first
frame. The Receiver block checks if there is no other

active connection with the same key [SOURCE MAC,CID].
If not, the connection is inserted on the Active Con-
nection List through Connection Manager block;

• Ack: A ’1’ value indicates that source host requests an
acknowledgement frame;

• Action: Together with other field indicates the type of
the frame. A ’00’ means data transfer operation and
’01’ means an Acknowledgment (ACK) response;

• UlApp: Indicates to which Upper Level Application
the frame is destinated to;

• Last: A ’1’ value indicates communication end, causing
the key [SOURCE MAC,CID] to be removed from Ac-
tive Connections List. If both First=’1’ and Last=’1’
the connection is not added to the Active Connection
List;

• Seq: The Sequence field. It is used to check if the
frames are sent correctly and without any loss.

• Reserved: Reserved for future use.

• Size: Size of Data in bytes. It was chosen to be 14
bits long since this way is possible to represent 16384
bytes of data, which is enough for the maximum Jumbo
frame size that our architecture will support.

A finite state machine on the Receiver block realize all ver-
ifications. After the verifications from the Receiving algo-
rithm, the header is stripped and stored in an entry on Con-
nection Manager block and the data is forwarded to the
Application layer. The Sender blocks communicates with
the Connection Manager, getting information about the con-
nection, and, in ACK frame sending cases, it communicates



Figure 3: Control header

Table 1: Device utilization for the proposed network

stack architecture
Resource Used Available Used(%)

Number of Slice Flip Flops 3,529 30,720 11%
DCM autocalibration logic 7 3,529 <1%
Number of 4 input LUTs 4,141 30,720 3%
Number of occupied Slices 4,080 15,360 26%

Number of RAMB16s (BRAM) 16 192 8%
Number of DCM ADVs 1 8 12%

directly with the Receiver block. The Sender block commu-
nicates with the Application in order to read data processed
by the Application.

3. IMPLEMENTATION
Our network node has been implemented in a Xilinx ML402
evaluation board. This board has Gigabit Ethernet PHY
and a Xilinx Virtex 4 SX35 FPGA. Our system achieves
a maximum frequency of 128 MHz, which satisfies Gigabit
Ethernet requirements, where design must reach at least 125
MHz of maximum frequency. Block RAM (BRAM) were
used in the Buffer implementation. The buffer size is 32
KB, where one half stores receiving data from Gemac and
the other half stores data to be sent.

Resource utilization is available on table 1. By looking at
this table is possible to notice that there are enough re-
sources to improve our design in many ways, for example,
increasing buffer size and improving parallelization.

Although the bus size used to communicate with Gemac
must be 8 bits wide, our proposed architecture uses an 32-
bit internal bus. This way, considering the clock frequency
employed in our system (125 MHz), it is possible to reach
an internal 4 Gb/s throughput in each way, i.e. an 8 Gb/s
full-duplex internal throughput. The buffer block also chops
and assembles the 32 bits to 8 bits and vice-versa in order
to communicate with Gemac.

The software implementation, developed in C language using
raw ethernet frames, was build using two threads through
library Pthreads. One thread handles the data sending pro-
cess and the other the data receiving process. This way,
the comparison between software version and our FPGA ar-
chitecture can be considered more fair than using a single
thread implementation.

4. RESULTS
The results have been obtained by sending frames of differ-
ent sizes to our proposed network node and for the software
version implemented in two PCs. Both PCs where the soft-
ware version run were a Pentium IV HT with 3.0GHz over
a Linux operational system with a SMP (Symmetric Multi-

Processing) kernel, which allows the software application to
use both threads in parallel.

The measurements have been made by using a PC connected
through an Ethernet cable to the ML402 board. The same
client software used in pure software measurements was used
on the PC side to connect with our network stack on ML402
board. The ML402 board was configured with all architec-
tures listed below, excepting PC Software running under
Linux operational system. The Application layer on each
architecture implements a pong application, which means
that each application should response with the same data it
was received.

• Proposal Arch (HW App): Our proposal architecture
using an Application layer developed in Hardware De-
scription Language.

• Proposal Arch (MB App): The same proposal archi-
tecture using a Microblaze c©microprocessor, so this ar-
chitecture have a software based Application layer.

• PC Software (Linux): A software developed in C lan-
guage running over Linux operational system. This
software implements the same features that our pro-
posal architecture implements.

• lwIP TCP: A Gigabit Ethernet Mac connected with
a Microblaze c©microprocessor where lwIP embedded
network stack was implemented, in this case using TCP
sockets.

• lwIP UDP: The same as above instead using UDP
sockets in communication.

The charts on Figures 4 and 5 show the latency and through-
put results for ping-pong tests for our architecture and for
other implementations. The latencies results show almost an
equivalence between or proposal architecture and PC Soft-
ware. The main reason behind these latency results is how
latency test were made. One frame with specific size is sent
(T0 time) and then the application keeps waiting until it
comes back (T1 time) (see figure 6). Since just one frame
is sent on this test, our architecture pipeline is empty, thus
not using hardware resources like its inherent parallelism.

Although, comparing our architecture with lwIP embedded
stack we achieve results more than 51 times better when
using 6020 byte frame size. On average our latencies results
were around 32 times better than TCP embedded software
and around 15 times better than UDP.

On the other hand, throughput shows, on average, 2.5 times
better results than the software implementation. The best
result, for 120-byte frames, allows 4.7 times more through-
put than in the software implementation, altough it repre-
sents just 111.54 Mb/s more throughput. Considering the



Figure 4: Proposal network stack architecture ver-

sus different network stacks’ latencies

Figure 5: Proposal network stack architecture ver-

sus different network stacks’ throughput results

Figure 6: Benchmark environment

throughput, the best result provided by our architecture has
been obtained using 7020-byte jumbo frames, when it is pos-
sible to transfer more 759.77 Mb/s than software implemen-
tation. In this configuration, our hardware is 2.38 times
better than the software implementation. Also, comparing
our architecture with lwIP implementation we had 27 times
more throughput in TCP and 18 times on UDP.

This behavior, where throughput results are much better
than latency results, is due our architecture pipeline is being
fully functional most part of the time. Also, the buffer uti-
lization allows an almost constant data rate between buffer
and Gemac since we fill the buffer with 32 bits words at each
125MHz cycle and the buffer outputs 8 bits words to Gemac
at the same frequency.

5. CONCLUSIONS
This paper presented a proposal of a network stack imple-
mented in FPGA. The architecture has been implemented
on an ML402 board and it’s using around 13% (4,203 LUTs)
of a Xilinx Virtex 4 SX35 FPGA. Its maximum frequency
of operation is 128MHz, which satisfies the requirements for
Gigabit Ethernet communication.

Our architecture showed, in the best case, a throughput per-
formance of 4.7 times better in the best case and 2.5 times
better in average compared with pure software implementa-
tion. Also, comparing with lwIP network stack it shows 44
times more throughput in our best case. Considering that in
all frame sizes our architecture shows very best results than
lwIP we could consider our proposal network stack a good
solution to provide high bandwidth to embedded systems
that pursue simple microprocessors.

6. ACKNOWLEDGEMENT
The authors would like to thank CNPq and the FINEP/SEBRAE
program for supporting the project VoIPWIFI and this work.

7. REFERENCES
[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E.

Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su.
Myrinet – a gigabit-per-second local-area network.
1995.

[2] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
analysis of tcp processing overhead. 40(5):94–101, 2002.

[3] A. e. a. Dunkels. lwip: A lightweigth tcp/ip stack
available at
http://savannah.nongnu.org/projects/lwip/. 2009.

[4] G. Gilder. TELECOSM: How Infinite Bandwidth will
Revolutionize Our World. 2001.

[5] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin.
Zero copy sockets direct protocol over
infiniband-preliminary implementation and
performance analysis. In Proc. 13th Symposium on
High Performance Interconnects, pages 128–137, 2005.

[6] A. Romanow, J. Mogul, T. Talpey, and S. Bailey. Rfc
4297 - remote direct memory access (rdma) over ip
problem statement. IETF, 2005.

[7] M. J. S. Smith. Gigabit ethernet and transport offload:
transport offload engines help relieve tcp processing
burden for gigabit ethernet. Computer Technology
Review, 2002.


