
A NETWORK-ON-CHIP BASED ARCHITECTURE FOR H.264 MOTION ESTIMATION

Alba Sandyra Bezerra Lopes, Ivan Saraiva Silva

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte, Natal, Brasil

alba@lasic.ufrn.br, ivan@dimap.ufrn.br

ABSTRACT

This paper presents an architecture that uses a

hardware/software methodology, with a NoC-based

hardware, for the H.264 motion estimation. The H.264 is

the newest video compression standard, which achieved

its goal reducing in 50% the number of bits needed to

represent the information. The proposed architecture was

implemented in hardware description language VHDL

and validated by simulations and FPGA (Field

Programmable Gate Array) prototyping. Silicon costs,

frequency and the communication with the external

memory were evaluated in order to verify the needs of

improvement to achieve the requirements adopted by

Brazilian Digital Television System.

1. INTRODUCTION

Nowadays a huge number of electronic devices are

capable of controlling digital videos. The video

compression becomes essential to make possible the

storage and mainly the transmission of these data.

A video is formed by a sequence of images, called

frames, which use to present great similarity. This

similarity is known as temporal redundancy [1].

The Motion Estimation (ME) is the most compute

intensive module of a video encoder [2]. This module

takes advantage of the temporal redundancy in a video

sequence to reduce the number of bits needed to

represent the total information.

The H.264 [3] is the newest video compression

standard, which achieved its goal reducing in 50% the

number of bits needed to represent the information. This

gain was a consequence of a high level increase in

computational complexity of its modules, mainly the

ME.

The architecture proposed here uses a

hardware/software methodology, with a NoC-based

hardware. The most time consuming part of the motion

estimation is done in hardware and the others stages are

made by software, providing a great flexibility.

This paper is organized as follow: the section 2

presents a short description of ME and the improvements

proposed for this module in H.264 standard. In the

section 3 is presented the proposed architecture. The

section 4 presents the execution flow. The next one

shows the results of synthesis and prototyping of the

proposed architecture. Finally, in section 5 there is a

conclusion and future work discussion.

2. MOTION ESTIMATION

Each frame in a video sequence is segmented into

fixed non-overlapping square blocks. A video sequence

can be constructed by using differences between blocks

of adjacent frames. These differences are represented by

motion vectors that indicate the relative move of a block

from a frame to another.

The ME can be divided in two stages. The block

matching stage consists in use an algorithm that moves a

block of a current frame in a search area from a

reference frame; and the function of similarity, which

measures how similar blocks of adjacent frames are.

Numerous block matching algorithms were proposed

to balance performance and accuracy. The Full Search

(FS) [4] is an example of algorithm that prefers accuracy

than performance. It is called optimal algorithm.

Algorithms, like Diamond Search (DS) [5], that proves a

great performance and an acceptable, but not exactly

response, is called sub-optimal algorithm.

There are many functions used to measure the

similarity between two blocks. The Sum of Absolute

Differences (SAD) is a simple function that use just sums

and subtractions to calculate the difference between two

blocks. Because of its simplicity, that is the most used

function of similarity on ME modules [6].

The H.264 standard proposes several improves to the

ME module. One of them is related to the block size.

Rather than exploiting a fixed block size like 16x16 or

8x8, H.264 supports the use of variable block size:

16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 [3]. A

decision mode must be used to choice which block size is

appropriate to each piece of image.

The architecture proposed in this paper uses the FS

for block matching, SAD for similarity calculation and

support variable block sizes.

3. PROPOSED ARCHITECTURE

The architecture, showed in the Figure 1, is formed

by 8 SAD Calculation Units interconnected through a

Network on Chip (NoC), a Nios II/f processor [7] and a

memory, all interconnected by an Avalon bus [8] one of

the NoC routers are connected to a component that

implements a wrapper mechanism between the Avalon

bus and the NoC.

The sub-sections bellow will present a short

description of each architecture component.

Figure 1 - Proposed Architecture

3.1. SAD Calculation Unit (SCU)

Each SAD Calculation Unit is responsible to provide

the results of similarity calculation between a 16x16

macroblock and its correspondent search area. These

units are coupled to the NoC routers and are composed

by four modules, like showed on Figure 2.

Figure 2 - SAD Calculation Unit

The local memory stores information about a

macroblock (16x16 pixels) and a 32x32 search area. In

this work only the luminance component of the image

pixels were considered. So, the total memory capacity is

1280 bytes: the first 1024 are dedicated to the search

area and the last 256, to the macroblock.

The SAD module implements the Sum of Absolute

Differences to 4x4 block size. This is the smallest size

allowed by the H.264 standard. Given the result of a 4x4

block size it is possible to obtain the others block sizes

values through the reuse of these values.

The Block Matching module carries the logic of the

block matching algorithm. This architecture version

implements the Full Search Algorithm. Once the search

area is a 32x32, 289 matches are done for each

macroblock. Future works include the use of Diamond

Search Algorithm.

SCU-Wrapper is the module that deals with the NoC

packages, sending and receiving data from processor.

3.2. Nios II Processor

The processor is the one that makes the frames

reading and distributes the macroblocks to the SCUs; it

reads the SAD result calculated by the hardware module

and reuses them to generate the others block sizes values

allowed by the H.264 standard. So, it generates the

motion vectors for each macroblock.

In this work, Altera’s Nios II/f [7] processor was

used. Nios II is a RISC, soft-core and general purpose

processor designer to attend a vast number of

applications. It was chosen to this work because of its

easier integration with Altera devices.

3.3. Processor Wrapper

To one of the NoC routers are connected a

component that implements a wrapper mechanism

between the Avalon bus and the NoC. This component

packs and unpacks data in the NoC protocol which

allows the data to circulate throw the network.

3.4. NoC SoCIN

In this work, the SCUs were integrated using the

NoC SoCIN. This is a very well documented and

recognized network that implements the ParIS router [9].

Once this NoC was used and tested by some others

academic works [10, 11], SoCIN has been chosen to

interconnect the SCUs, saving implementation time.

SoCIN has 2-D grid (or mesh) topology and

wormhole packet-based switching. Others network

characteristics can be modified changing a set of

parameters. In this work, a NoC of 3x3 dimension was

configured to use deterministic XY routing, handshake

flow control and round robin arbitration.

This network has a defined package format. To this

specific work, three types of packages were used. These

packages are showed on Figure 3.

SoCIN reserves the most significant bit of each word

to indicate the end of the package. The second most

significant bit indicates the start of the package. The last

4 bits of the header are used to address of the destination

node of the package.

Additional useful information was incorporated to the

package header. Three bits are used to identify the type

of the package and 4 bits were used to identify the source

node of the package.

The package showed on Figure 3 (a) contains the

pixels of a 16x16 macroblock and its respective search

area. This information comes from the processor, and is

delivered to a SCU.

Figure 3 (b) presents the SAD result package. The

sixteen 4x4 results of one block matching are sent to the

processor that is responsible to reuse these values and to

provide the other block size values: 4x8, 8x4, 8x8, 8x16,

16x8 and 16x16.

Figure 3 - The type of packages used by the architecture on the

NoC SoCIN: a) The package used to send a macroblock and

search area data; b) SAD result package; c) The execution end

package.

The last package type, showed in Figure 3 (b), is

used to communicate the processor that the SCU has

finished the block matching execution.

4. EXECUTION FLOW

The execution starts at the processor that reads the

frames and segment the current frame in macroblocks.

Then the processor sends a macroblock and its

correspondent search area to each SCU through Avalon

Bus. When the pixels arrive at the Processor Wrapper, it

packs the information in the NoC pakage format and

sends it to the destination node.

Once the package arrives at the SCU, the SCU-

Wrapper unpacks the information and writes the pixels

at the local memory. Then the block matching process is

started. For each match, a package containing the sixteen

4x4 SAD results are sent to the processor that can reuse

this values to generate the others block size modes.

When the all matches are made, a package indicating the

end of the block matching process is sent to the

processor. So, while there are remaining unprocessed

macroblocks, the processor sends a new macroblock to

the SCU that has finished its execution and the process is

restarted.

5. RESULTS

The architecture components presented in the section

3 was implemented in VHDL and integrated to the NoC

SoCIN also described in VHDL. The complete

architecture was synthesized and prototyped on a FPGA

from Altera Cyclone II family. This FPGA is the

EP2C35F672C6 presents at the Altera DE2 prototyping

kit.

To VHDL description and synthesis was used the

Altera Quartus II, version 8.1. The SOPC Builder,

version 8.1, was used to create the system composed by

architecture components, memory, Nios II processor and

Avalon Bus.

A language C application was implemented to

execute the software motion estimation parts at the

processor. The Altera Nios II IDE compiled and injected

the application into the system through the JTAG UART

I/O component.

The maximum operating frequency of the system is

97.01 MHz. The Table 1 bellow presents the results for

silicon area obtained from the prototyping.

Component Logic Elements

8 SCUs 3618

9 NoC Router 3402

Processor Wrapper 118

Nios II/f 2521

Performance Counter 1333

Total Area 10992

Table 1 - Silicon cost for each architecture component

The area unit used by Cyclone II family is the Logic

Element (LE). This device has 33.216 so the architecture

uses approximately 33% from the total of logic elements

available.

The Performance Counter is an Altera’s component

and was used just to measure performance from parts of

the application, so it can be removed without causing

problems for the architecture.

Furthermore, 148864 memory bits from the device

were used. It represents 33% of the total available and

are used as the local memory of the SCUs and as some

buffers used to store temporary data.

The Figure 4 presents the percentage of time spent in

some tasks of the architecture. It’s possible to notice that

5% of the time is dedicated to the SAD calculation, the

most costly task, realized in hardware. 36% of the time is

used to transmit data between the hardware module and

the processor through Avalon Bus. The remainder time

is used by the processor to execute the software tasks

described on section 3 and access the external memory

(also by the Avalon Bus).

This results show that the Avalon Bus

communication is a bottleneck to the total run time of the

architecture.

This architecture is not yet capable to achieve real

time required for Brazilian Digital Television System,

but some improvements are been studied to make it

possible. These improvements will be described on the

next section as future works.

Figure 4 - Percentage of execution time tasks from the

architecture

6. CONCLUSIONS AND FUTURE WORKS

In this paper was proposed an architecture that uses a

hardware/software approach, with a NoC based hardware

for the motion estimation. The architecture was

implemented in VHDL, integrated with the NoC SoCIN,

synthesized and prototyped on an Altera’s FPGA chip.

The performance results showed that this architecture

is still not able to achieve real time processing required

for Brazilian Digital Television System. The results

obtained showed that the Avalon Bus is a bottleneck to

the data transfer. The tools used in this work require the

use of Nios II/f processor with the Avalon Bus. The code

of Nios II/f core is proprietary and no modification can

be done to integrate another bus. So, another processor is

been studied to be integrated to the architecture: Plasma

is a simple processor that implements the MIPS

architecture and its VHDL core code is available to

distribution and modification [12].

Future works include the implementation of Diamond

Search block matching algorithm. This algorithm has

been studied from the past years and has shown great

results on balancing performance and accuracy [13].

The internal parallelization of the SAD module from

the SCU component must improve the total gain and will

be done too.

Another future work is relative to the distribution of

macroblocks between the SCUs. Currently, the next

macroblock in the sequence is sent to the SCU that

finishes its job and requests a new one. As adjacent

macrobloks share search area data, each SCU must be

responsible for a set of adjacent macroblocks avoiding

resend data that already is in the local memory of

another SCU.

10. REFERENCES

[1] I. E. Richardson, H.264 and MPEG-4 Video Compression:

Video Coding for Next-Generation Multimedia. John Wiley

and Sons: 2002.

[2] L. Deng, W. Gao, M. Z. Hu, and Z.Z. Ji, “An efficient

hardware implementation for motion estimation of AVC

standard”, Consumer Electronics, IEEE Transactions on ,

vol.51, no.4, pp. 1360-1366, Nov. 2005

[3] ITU-T – International Telecommunication Union. ITU-T

Recommendation H.264/AVC (05/03): advanced video coding

for generic audiovisual services. In 2007.

[4] V. Bhaskaran, K. and Konstantinides. “Image and Video

Compression Standars: Algorighms and Architectures”. 2 ed.

Kluwer Academic Publishers: Boston, 1997.

[5] X. Yi and N. Ling, “Rapid block-matching motion

estimation using modified diamond search algorithm”, Circuits

and Systems, 2005. ISCAS 2005. IEEE International

Symposium on, vol., no., pp. 5489-5492 Vol. 6, 23-26 May

2005.

[6] J. Vanne, E. Aho, T.D. Hamalainen and K. Kuusilinna, “A

High-Performance Sum of Absolute Difference Implementation

for Motion Estimation”, Circuits and Systems for Video

Technology, IEEE Transactions on, vol.16, no.7, pp.876-883,

July 2006.

[7] Altera Corporation, “Nios II Processor Reference

Handbook”, http://www.altera.com, 2009.

[8] Altera Corporation, “Avalon Interface Specifications”,

http://www.altera.com, 2009.

[9] C. A. Zeferino, F. G. M. E. Santo and A .A. Susin, “ParIS:

A Parameterizable Interconnect Switch for Networks-on-Chip”.

In: 17th Symposium on Integrated Circuits and Systems Design

(SBCCI), 2004, Porto de Galinhas. Proceedings. New York:

ACM Press, 2004. p. 204-209.

[10] M. B. Costa and I. S. Silva, “A Core for Network-on-Chip

Latency-Based Performance Analysis”. In: 8th Microeletronic

Students Forum (SForum), 2008, Gramado.

[11] H. C. Freitas, P. O. A. Navaux, and T.G.S. Santos, “NOC

architecture design for multi-cluster chips”, Field

Programmable Logic and Applications, 2008. FPL 2008.

International Conference on, vol., no., pp.53-58, 8-10 Sept.

2008

[12] S. Rhoads. “Plasma CPU Core”. Disponível em:

http://www.open-cores.org?do=project&who=plasma, 2009

[13] M. Porto, L. Agostini, S. Bampi, A. Susin, “A high

throughput and low cost diamond search architecture for

HDTV motion estimation”, Multimedia and Expo, 2008 IEEE

International Conference on , vol., no., pp.1033-1036, June 23

2008-April 26 2008.

