
AN H.264/AVC DECODER FRONTEND TARGETING BROADCASTING DTV FOR
SBTVD

Márlon A. Lorencetti, Letícia V. Guimarães, Altamiro A. Susin

Universidade Federal do Rio Grande do Sul

ABSTRACT

This work proposes an input interface to an H.264 video
decoder targeting real broadcasting conditions. Switching
on the decoder on an arbitrary moment of the input
stream, for example because of power on or channel
change, may lead to an incomplete set of data for the
decoding process. Furthermore, signal loss or a global
reset must be suitably undertaken by the decoder. From
an error-free input stream, test conditions are generated
by means of suppression of selected information. The
interface receives the input signal as a sequence of
NALUs (Network Abstraction Layer Unit), detects these
units, communicates with the global control module and
sends the RBSP (Raw Byte Sequence Payload) data to
the input buffers of the entropy decoder modules. An
elementary control was defined to process the protocol
functions generated in the interface. The input interface
and the control functions were implemented in software,
following the co-design strategy adopted by the decoder
development team. Some experiments were performed
using this implementation, where it was possible to test
some particular situations such as cleanup at power on.

1. INTRODUCTION

This work is part of the development and prototyping of
a hardware H.264/AVC [1] video decoder for the
SBTVD (Sistema Brasileiro de Televisão Digital) [2][3],
the digital television system adopted in Brazil. A
consortium of research laboratories in universities all
over Brazil is developing all the coding and decoding IPs
that are compliant with this system.

The existence of a data interface between the video
decoder and the rest of the set-top box (or access
terminal) is evident [3], and considering that different
development groups are responsible for those tasks, there
is the need to specify and simulate real conditions before
the actual hardware implementation. The study of data
transfer in this case leaded to a specification of signal
requirements, which had to be put under test to verify
whether it reached its purpose.

The input interface and the control functions were
implemented in software, as a part of the co-design
strategy being used by the H.264 decoder development
group [4]. Therefore, the implemented software must
follow the premises to attend the interface specification
and be as modular as the proposed hardware, in order to
aid the hardware project by acting as the first

experimenting model to determine some parameters to be
adopted in the development and validation.

In the section 2 of this work, are presented the
protocol used in the bitstream of an H.264 coded video
and the interface duties in the decoding process. The
third section presents the proposed architecture and its
working method. Section 4 shows the software
experiments that were made in order to test the proposed
scheme. Conclusions and future works are given in
sections 5 and 6, respectively.

2. DECODER INPUT INTERFACE

2.1. Bitstream structure

The H.264 video bitstream comes encapsulated in
NALUs, a sequence of byte aligned information that
contains a heading byte. The first bit shall be equal to
zero, the next 2 bits indicate whether the NALU class and
the remaining 5 bits inform the NALU type [1]. The
RBSP is the part of the NALU where the actual data is
carried, which can be either image data, parameter sets or
control actions. An access unit is a set of NALUs
containing exactly one coded picture [1].

In order to detect the start of a new NALU, a
start_code (0x000001) is sent in the bitstream. When this
particular sequence needs to be sent as RBSP data, the
encoder inserts a prevention byte (0x03), called
emulation_prevention. This byte needs to be discarded
when it comes in one of the following sequences:
0x00000300, 0x00000301, 0x00000302, 0x00000303.
Additionally, an extra byte (0x00) called zero_byte shall
be present before the start_code when the NALU is the
first on its access unit or when the NALU contains a PPS
(Picture Parameter Set) or SPS (Sequence Parameter Set)
[1].

2.2. General interface features

The H.264 decoder input interface is usually seen as a
buffer that stores the bits or bytes composing the NAL
units sequence, also called video ES (Elementary
Stream). These input data buffers are usually circular
buffers, as shown in [5]. In this case, the detection and
interpretation of the NAL units are allocated in the parser
module, when in accord with this group, the parser
module should be used to distribute the data to the
corresponding processing modules in the video decoder.

The proposed interface module must receive and store
the data coming from the demultiplexer, identify the
NALUs and send the coded data to the processing

modules, while preventing that uncompleted or invalid
data is stored in their input buffers, such as header and
protocol signals.

The interface communicates with the global control,
allowing a data flow control. The global control must
monitor the status of the processing modules input
buffers and inhibit reading/writing until the buffer is
available. It must detect the signals informing a new
NALU and the NALU type and recognize the required
decoding conditions.

The contribution in this work is the interface design
targeting broadcasting conditions. That is, the interface
modules, and mostly the control modules, must be able to
handle particular situations such as signal loss, output
buffers overflow, input buffers underflow, a global reset,
the lack of configuration parameters or reference image
data. Considering this, the decoder must wait for the
required decoding conditions, which shall happen after at
most 5 seconds, as specified in [3]. These situations are
usual in a broadcast system like the one where the final
decoder will operate. Although, most of the related works
found in the literature work with a regular input data
reception, such as a video stored in memory or in a file
[5][6]. In this kind of input, there is much higher
communication reliability and all the required parameters
are available in the beginning of the file.

Besides, other software implementations are not
written with this specific purpose. For example, the JM
Reference Software [7], the standard software for H.264
decoding, receives the bitstream as a file and is not able
to decode that file if it does not begin with an NALU
start_code (0x000001). In the same way, JM is not able
to handle files where there is image data sent before the
parameter sets.

3. PROPOSED ARCHITECTURE

In the proposed architecture, there is a control module
that requests data and is informed by the interface

modules when control actions are required. Signals are
used to inform the detection of a new NAL unit, the type
of NAL unit, the buffers status, and the existence of valid
data.

After a reset, the control module requests a byte. The
data incoming to the input buffer changes the signal
status_in_buffer in the input interface data, allowing
them to process the stored data. The reset values of the
interface signals are shown in Tab. 1.

Tab. 1 – Architecture reset signal values

Signal Reset Value Source
reset 1 Demultiplexer
status_in_buffer 00 (empty) Interface module
rbsp_data XX (invalid) Interface module
rbsp_valid 0 Interface module
nalu_type 00 (invalid) Interface module
data_request 0 Control module

The data request from control module leads to the

analysis of 4 bytes from the input buffer in the
start_code/emulation_prevention detection module. The
requesting process is shown in Tab. 2, where FIFO
position filled with -1 represent invalid data; and
status_fifo can be empty/half full/full, represented with
values 0, 1 or 2, repectively. The status of the signal
shown in Fig. 2 are represented in the columns of the
table, where each line represents a cycle.

The 4 bytes FIFO reads a byte from the input buffer
requesting data with data_req1=1 and waiting for the
byte to be available with byte_a=1. This repeats until the
FIFO is full. During normal operation, a byte is inserted
in the tail of the FIFO while another is discarded from the
head. Every byte insertion triggers the comparison
searching for the start_code (0x00000001 or
0xXX000001) or the emulation_prevention
(0xXX000003). If a start_code is found, the detector
sends a signal to the NALU analyzer (sc_detected=1)

es_video (8)

clk_interface

Input
Interface

reset

rbsp_data (8)

es_valid

nalu_type (8)

D

EM
U

X

Entropy
Decoder Input

Buffers

status_in_buffer

Input Data

H.264

Decoder
Control
Module

status_buffer select_buffer

H.264
Decoder

Processing
Modules

reset

rbsp_valid

data_request

Fig. 1 – Proposed architecture

reading 3 or 4 new bytes from the input buffer. If it is an
emulation_prevention, then the 0x03 byte is just ignored.
Else, the RBSP byte at the head of the FIFO is sent to the
data bus and the signal rbsp_valid is set to 1. The control
module enables the corresponding module from the
decoder to read the data bus.

When the NALU analyzer gets the sc_detected signal,
it requests the header byte from the
start_code/emulation_prevention module with
data_req2=1, which is the next byte after the start_code.
Reading the byte from the data bus with byte_valid=1, it
decodes the NALU type and discards the header byte
from the data bus requesting another byte. The NALU
type is sent to the control module, which already has
available the first RBSP byte in the data bus, with
rbsp_valid=1.

The control module then uses the byte from the bus,
stopping the data request with data_request=0, remaining
in this state while the control module processes the
current byte. The process restarts with a new data
request, with data_request=1. The FIFO content
throughout the input processing is shown in Tab. 2.

4. EXPERIMENTS AND RESULTS

Before the actual hardware implementation, the proposed
architecture was implemented in software. This co-design
strategy has been used by the video decoder development
group. A Matlab routine was then written in order to
validate this structure. This Matlab program performs the
control actions and verifies the state of each signal per
cycle, storing them on a file for further debugging. The
routine was written in a structure that is similar to the
proposed hardware, encapsulating every hardware
module in a function and avoiding execution loops.

The input file is generated with the JM software
encoder [7], setting the encoder to resend SPS and PPS in
a certain period of frames. Then some bytes were
removed from the beginning of the file in order to
simulate a real broadcast, where the user will not

necessarily turn on the decoder at the right time to get a
new NALU with the required parameter sets. The data
removal was made in such a way that the file does not
always begins with a start_code. Alternatively, it begins
with a NALU with a picture sent before the parameters
needed to decode it.

The behavior of the interface and control modules
was observed and captured into files. The sequence of
control actions and the state of each signal matched the
expected results, proving the proposed architecture a
feasible effort to get the input data and control this part of
the decoding process.

Besides, some experiments were made in the
PRH.264 software decoder developed by the decoder
team [4]. In this C written software, some structures were
created. One of them implements a FIFO, with some
auxiliary functions to clear, read or write from the FIFO,
allocate and free its memory. This structure will be
extensively used in the interface modules and in the
processing blocks, to simulate their input buffers. The
other structure implements the control signals indicating
the states of the buffers or the detection of protocol and
parameters. Some functions use this structure to
implement the control module, checking and changing
the values of the signals.

5. CONCLUSIONS

This paper presented an interface and control method to
be implemented in the hardware video decoder for the
SBTVD. The experiments showed that this architecture
meets its requirements, detecting the NAL protocol and
sending a raw data payload to the processing modules.
Also, the frequency of the data arrival from the
demultiplexer is considerably smaller than the frequency
of these modules, assuring that the actions performed
here will not disturb the data flow.

Input

Buffer

Start_code

and
Emulation_
prevention
Detector

NALU
Analyze

r

rbsp_valid

status_buffer

sc_detected

data_request

nalu_type (8)

reset

O
Res_video (8)

clk_interface

es_valid

data_req2
data_req1

byte_a

byte_valid

data_req3

data_bus (8)

Fig. 2 – Proposed interface module

6. FUTURE WORKS

The control actions must be expanded to cover all the
modules of the decoder, performing a correct data
transfer between modules, and assuring the
synchronization over the decoding process. In the
PRH.264 software, the NALU decoder shall recognize
the control messages from the units EoS (End of
Sequence), EoStream (End of Stream) and FD (Filler
Data). Besides, the obvious sequel of this work is its
implementation in hardware with an HDL description,
simulation and FPGA prototyping.

7. REFERENCES

[1] Video Coding Experts Group, “ITU-T Recommendation
H.264 (03/05): Advanced video coding for generic audiovisual
services”, International Telecommunication Union, 2005.

[2] “ABNT NBR 15602-1 Televisão Digital Terrestre –
Codficação de vídeo, áudio e multiplexação”, ABNT, Rio de
Janeiro-RJ, 2007.

[3] “ABNT NBR 15604 Televisão Digital Terrestre –
Receptores”, ABNT, Rio de Janeiro-RJ, 2007.

[4] M.A. Lorencetti, W.T. Staehler, A.A. Susin, “Incremental
Hardware Development from Modular Mixed C-VHDL
Simulation”, 8th Students Forum on Microelectronics
SForum’08, Gramado-RS, 2008.

[5] K. Xu, C.S. Choy, “Low-power H.264/AVC Baseline
Decoder for Portable Applications”, 2007 International
Symposium on Low Power Electronics and Design, Portland,
USA, 2007.

[6] M. Brown, K.W. Hsu, “A Novel 5.46mW H.264/AVC
Video Stream Parser IC”, SOC Conference, IEEE International,
2008.

[7] “H.264 Reference Software”,
http://iphom.hhi.de/suehring/tml/, 2009.

Tab. 2 – Signals vs cycles

cy
cl

e

re
se

t

FIFO

st
at

us
_f

ifo

da
ta

_r
eq

ue
st

da
ta

_r
eq

1

da
ta

_r
eq

2

sc
_d

et
ec

te
d

rb
sp

_v
al

id

na
lu

_t
yp

e

0 1 -1 -1 -1 -1 0 0 0 0 0 0 0
1 0 0 -1 -1 -1 1 1 0 0 0 0 0
2 0 0 0 -1 -1 1 1 0 0 0 0 0
3 0 0 0 0 -1 1 1 0 0 0 0 0
4 0 1 0 0 0 2 1 0 0 0 0 0
5 0 -1 -1 -1 -1 0 1 1 0 1 0 0
5 0 105 -1 -1 -1 1 1 0 0 1 0 0
6 0 16 105 -1 -1 1 1 0 0 1 0 0
7 0 0 16 105 -1 1 1 0 0 1 0 0
8 0 0 0 16 105 2 1 0 0 1 0 0
9 0 0 0 0 16 2 1 0 0 0 1 9

10 0 1 0 0 0 2 1 0 0 0 1 9
10 0 1 0 0 0 2 0 0 1 0 0 9
11 0 -1 -1 -1 -1 0 1 1 0 1 0 9
11 0 103 -1 -1 -1 1 1 0 0 1 0 9
12 0 66 103 -1 -1 1 1 0 0 1 0 9
13 0 0 66 103 -1 1 1 0 0 1 0 9
14 0 40 0 66 103 2 1 0 0 1 0 9
15 0 231 40 0 66 2 1 0 0 0 1 7
16 0 64 231 40 0 2 1 0 0 0 1 7
17 0 176 64 231 40 2 1 0 0 0 1 7
18 0 75 176 64 231 2 1 0 0 0 1 7
19 0 32 75 176 64 2 1 0 0 0 1 7
20 0 0 32 75 176 2 1 0 0 0 1 7

