
FUNCTION VERIFICATION OF A USB HOST CONTROLLER

Renata Garcia Oliveira, Edna Barros da Silva Natividade

UFPE, Universidade Federal de Pernambuco, Av. Professor Luis Freire s/n,

Cidade Universitária, Caixa Postal 7851, Recife-PE, Brasil

rgo, ensb@cin.ufpe.br

ABSTRACT

As NRE cost (Non-Recurring Engineering) to

production of a single chip is very high, it is highly costly

to fix bugs after the manufacturing. However by the end of

80s was standard practice to design a chip and then verify

it. Later, a shift took place towards pre-silicon verification,

where verification was performed prior to tape-out and in

parallel with design [2].

This study aims at an instantiation of verification

discipline of the development process ipPROCESS. The

case study will be a USB Host Controller. Some tools will

also be presented to automate design steps of the case study

considerably reducing the chances of occurrence of human

error. The USB IP Core was chosen because it has a

standard interface design and is consolidated in the

market.

Key Words - Functional Verification, USB,

Functional Verification Automation, Self-Check

Verification.

1. INTRODUCTION

More and more devices are based on CMOS

(Complementary Metal–Oxide–Semiconductor) technology.

The reducing scale of this technology has enabled more

features to be integrated in a single chip as Moore’s Law

predicted. For an example, SoC (system-on-chip) offers a

whole system integrated in a single chip resulting in a more

complex and more required system by the market. SoCs

provide high performance, less area, less memory

requirement, greater system reliability and lower

consumption [1].

As NRE cost (Non-Recurring Engineering) to

production of a single chip is very high, it is highly costly to

fix bugs after the manufacturing. However by the end of 80s

was standard practice to design a chip and then verify it.

Later, a shift took place towards pre-silicon verification,

where verification was performed prior to tape-out and in

parallel with design [2].

Verification is a process to demonstrate the design

intention was preserved in implementation so Functional

Verification must ensure the design desired function and it

does not do anything unexpected, but do not consider:

power, maximum speed and area. With all these

responsibilities Verification spent 70% of total project

effort [3].

The functional features that can fill a single chip have

increased. This implies a more complex and expensive

functional verification system. Chip-respin (chips that fail in

the first layout) occurs because of errors and failures during

function verification. This work reports the guidelines for

functional verification.

The reasons to industrial failured devices or chips-respin

were analyzed on 2002 and on 2004. The first reason was

the functional errors which were not catch during

verification. It is estimated that 60% of the verification

effort are now in the debugging process. Verification

engineers struggle to find the bugs and then fix them

without inserting a new bug [5]. It is more rare find an first-

silicon ASIC. The debug time can not be determined, that’s

mean it can not schedule it [4].

2. VERIFICATION FLOW AND DESIGN

In this section, it will be presented the build verification

flow of the IPprocess [6]. The verification flow will be

exampled through a Universal Serial Bus (USB) host

controller verification.

The USB specification defines different types of

transaction and transmission capabilities [7]. The USB

verified it is Low and Full Speed Controller and it has just

the Control and Bulk Transaction been capable of

communicating (setting device and doing mass data

transfer) with most devices on the market.

The USB Host Controller design was done in SystemC

and was synthesized on Forte tool of Cynthesizer [12].

First, it was development the behavior model and then it

was refined to verilog rtl.

The USB Host communicates with the Avalon Bus and

the UTMI Low Pin Interface Bus (ULPI) [11]. USB

interfaces with the host controller driver (HCD) of the

µClinux operational system and the system memory through

the Avalon bus and has to transmit/receive data to/from an

USB PHY according to the ULPI interface at 60MHz. To

achieve this requirement in design, was initially used a

1024x8 bits register bank that worked as a buffer to store

the transmitted/received packet.

Figure 1. USB host controller architecture.

The USB Transaction is responsible for looking control

registers, getting data memory through MAC, adding

CRC16 [7], assembling the packets and sending to RootHub

module. State Control manages the USB state and lets

visible for all design. The Frame Management counts the

frame time and sends frame packet to usb device through

USB Transaction and the Interrupt Trigger module manages

internal interruptions.

Figure 2. IPprocess Verification Build Flow [6].

The RootHub module is responsible for managing device

status and for assembling packets to ULPILink module.

This module interfaces with the ULPI (UTMI Low Pins

Interface) to communicate with USB3300 board [8].

RootHub has a special importance for verification flow,

because it interfaces an external board and the USB was

prototype in FPGA, so timing is critical. Then IPprocess

verification flow is instantiated to verify the RootHub.

Figure 2 shows the IPprocess Build Verification Flow.

There are three steps to be followed and each steps define

the input required and output generated. All steps were

followed on verification of USB host controller design.

From now on, each step will be numbered to facility

reference only:

1. Implement Verification Scripts

2. Build Verification Environment

3. Implement Reference Model

The IPprocess verification flow on Roothub will be

showed in the next sub-section. The USB instatiation will

be showed after.

2.1. Roothub Testbench

Figure 3. Roothub verification environment.

Roothub needs a simulated testbench and a prototyping

testbench. In implementation was used SystemC and Forte

tools, so it could create just one testbench, synthesizable

SistemC. Figure 3 has the result of step 2 in verification

flow. The Driver Simulator is responsible to send the

stimuli to DUV (Roothub). These stimuli was described as a

scenario, the intention is validated the communication with

an external board (USB3300) and not to do a stressful

stimulus verification.

The Roothub reports the reset device and the status

attach. It is also responsible for sending and for receiving

packets through ULPI interface to device. This functional

environment uses a pin accurate interface.

Figure 4. Roothub testbench.

Once the testbench was simulated, the roothub testbench

need to be prototype, so it will be validate the correct

timing with the external board as showed in Figure 4. The

Driver Simulator and the DUV are synthesized by Quartus

7.2 [10] to Stratix II FPGA [10]. If there is any error, it is

used the Logic Analyzer [10] to find the error faster,

because we know the exact failure point at that moment.

Figure 5. USB Host Testbench

Step 1 of functional verification flow results in platform

automation of Figure 4. This improves the time spent on the

build and verification process. Below it has the explanation

of USB host controller functional verification environment.

2.2. USB Host Controller Testbench

Error! Reference source not found. shows step 2 of

functional verification flow. The scenario contains stimuli

that driver simulator will pass to DUV through the pin

accurate interface and protocol contains protocol answers

that the stub simulator can send to DUV. Both simulators

have a parser to read these files, an initiator stimulus and a

responder stimulus.

The checker was implemented through file compare

scripts. Both simulators write the trace simulation so to

check the simulation accuracy just compares the files. Step

3 of functional verification flow implements a reference

model inside of the stub simulator.

The driver simulator configures the USB registers

(OHCI – Open Host Controller Interface) and puts the data

on memory system. The stub simulator pretends to be

various devices and responds according the USB protocol

and ULPI protocol, besides that the stub simulator must

stress protocols communication and monitoring the bus

looking for failures.

Next subsection will show tools built for automating

environment and improving time spent on verification

process.

2.2.1. Automation of Environment

There are many parameters to be set on Scenario file, so

it was necessary to avoid errors on a recent file created, to

do this a php script called Scenario Generator (SG) was

created. All parameters can be set by a graphical interface;

Figure 6 shows one’s SG interface.

Figure 6. Build Verification Scenario.

2.2.2. Domain Specific Language creates bash script

The DSL Automation Scripts was created to improve

the planning of bash script creation. This tool allows:

• To build quickly any bash script using graphical,

so it is a flexible tool.

• To improve the script reuse, it aims to reduce the

effort to build vital scripts to the verification

environment.

Figure 7 shows the USB verification script. Toolbox

shows the primary components and below it has the

properties of selected components. The Sample.shl file

contains model script, the ellipses represent the variable

environment, the HC box and dark circle represents a target

of the script, and it rests the light circles which represents

parameters target. For example, target all does not need a

parameter, because this target simulates all scenarios.

3. CONCLUSION AND FUTURE WORK

Table 1. Coverage Analysis.

of events

specified

of events

found

Percent

Coverage

USB

Protocol
481 444* 100%

ULPI 444 370* 100%

Total 925 814* 100%
*Some events specified for the design were never found; it was made

an analysis and discussed with the design team. It was concluded that these

events were impossible.

This paper presented the IPprocess verification flow and

it’s instantiation on a USB host controller design. It was

used files to set the simulation so further functionality can

be added and verified any time.

During the USB verification was created thirty seven

scenarios and twenty four protocols files, as one scenario

and one protocol file is necessary to simulate the

environment, 37x22=814 different environment

configuration was simulated. Fifty four design errors were

found. Table 1 shows more details.

When scenarios were simulated without any scripts, it

took almost two days to verify a scenario. So it was showed

the automation structure and how it helps to improve the

environment. The complete environment permits to verify

all different configurations in less than three days.

Future work will focus on improving coverage metrics

and random stimulus generation towards full coverage.

Figure 7. DSL Automation Script.

4. REFERENCES

[1] Silicon Far East. 2005. Site sobre Fabricaçõ de

Semicondutores. [Online] 2005. [Citado em: 25 de ago de

2008.] http://www.siliconfareast.com/soc.htm.

[2] Wilson, Chris. 2008. Leveraging Design Insight for

Intelligent Verification Methodologies. EDA Design Line.

[Online] 2008. [Citado em: 25 de ago de 2008.]

http://www.edadesignline.com/showArticle.jhtml;jsessionid

=JSXAPDWQSBUSUQSNDLRSKH0CJUNN2JVN?articl

eID=208401374&queryText=verification.

[3] Bergeron, J. 2003. Writing Testbenches: Functional

Verification of HDL Models. s.l. : Second Edition, Kluwer

Academic Publishers, 2003.

[4] Lange, Michelle e Boer, TJ. 2007. Effective Functional

verification Methodologies fo D0-254 Level A/B and other

Safety-Critical Devices. s.l. : Mentor Graphics Corporation,

2007. Rev. 1.1. White Paper.

[5] Mentor Graphics Corporation, TNI-Software, D0-254

User's Group, HighRely Inc. 2007. D0-254: Understanding

the Issues that Impact Business. 2007. Rev. 2.0. White

Paper.

[6] ipPROCESS. 2007. Modelagem do processo

ipPROCESS. [Online] 2007. [Citado em: 25 de ago de

2008.] http://www.lincs.org.br/ipprocess.

[7] USB.org. Universal Serial Bus. [Online] USB

Implementers Forum, Inc., creators of USB technology.

[Citado em: 24 de nov de 2008.] http://www.usb.org/.

[8] SMSC. 2008. USB3300 Hi-Speed USB Host, Device or

OTG PHY with ULPI Low Pin Interface. [Online] SMSC,

2008. [Citado em: 24 de nov de 2008.]

http://www.smsc.com/main/catalog/usb3300.html.

[9] BRAZIL-IP. 2005. [Online] 2005. [Citado em: 25 de

ago de 2008.] http://www.brazilip.org.br.

[10] Altera Corporation. 2008. Altera Literature. Design

Debugging Using the SignalTap II Embedded Logic

Analyzer. [Online] Nov de 2008. [Citado em: 8 de nov de

2008.]

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf.

[11] ULPI. 2004. UTMI+ Low Pin Interface (ULPI)

Specification. 2004.

[12]. Cynthesizer 3.6 Automated Design partitioning,

interface Creation, Scalability Enhancements, & More

[Citado em: 27 de julho de 2009.] http://www.forteds.com/.

