
CABARE: AN EDUCATIONAL RECONFIGURABLE GENERAL PURPOSE

PROCESSOR

Tadeu Ferreira Oliveira, Ivan Saraiva Silva

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte, Natal, Brasil

tadeu@lasic.ufrn.br, ivan@dimap.ufrn.br

ABSTRACT

Reconfigurable architectures combine the flexibility of

general purpose processors and the efficiency of ASIC

(Application Specific Integrated Circuit), this paper first

discuss the current reconfiguration related works then it

describes a general purpose processor that uses control

unit reconfiguration to achieve flexibility and efficiency.

The architecture was completely prototyped and tested on

FPGA (Field Programmable Gate Array) along with a

memory module and an assembler tool that generates

code to the processor, results show that there are

minimum area requirements and the architecture may

expand to add new instructions or to be used as part of

another SoC.

1. INTRODUCTION

The systems using general purpose processors has

clearly presented as the standard on desktop computers

specially for its flexibility of application, on the other

hand embedded devices industry has developed ASIC as

a low energy highly efficiency platform since those ASIC

can perform specific tasks with minimum resource use.

The reconfigurable architecture offers the advantage of

using a specialized instruction set, as in an ASIC

architecture, and the flexibility of general purpose

processors.

Cabare (Computer Architecture BAsed on

REconfiguration) uses a control unit based

reconfiguration, so the developer may create his own

instructions based on control of the signals inside the

processor. Among reconfigurable processor classes, the

RISP (Reconfigurable Instruction Set Processors) began,

recently, to be more explored, due it allows dynamic

reconfiguration of the instructions set as the instruction

pattern (format, operands, etc.).

The RISP processors can be used in multimedia

applications, digital signal processing, cryptography, etc.

Besides that, in consequence of its particular features,

related to internal logic and change of instructions, they

become issue to research and academic works involving

computer architectures and microprocessors in computing

engineering and computing science graduation courses.

Next section we discuss the current efforts on

processor reconfiguration, section 3 describes deeply our

approach and the architecture of Cabare section 4 shows

results of prototyping and test, finally section 5 shows our

conclusions and future works.

2. RELATED WORKS

During last years many Reconfigurable processor

were developed and evolved with the available

technology, trying to solve new challenges on industrial

and academic areas.

The first called reconfigurable processor was PRISC

(Programmable Instruction Set Computer), in 1994 in [8].

PRISC was the first to use a RFU on a MIPS datapath.

Reconfiguration based processor development leaded to

the creation of DISC (Dynamic Instruction Set Computer)

by [9] using partial reconfigurable FPGAs. A Hybrid

architecture called GARP developed by [6] using a FPGA

as a slave functional unit placed on the same location of

the processor supporting multicycle operations. In 2001

[4] created the OneChip architecture, this architecture

integrates a reconfigurable unit inside a superscalar RISC

pipeline processor. The VISC (Variable Instruction Set

Communications Architecture) developed by [7] uses a

dictionary to define the type of each instruction allowing

the complier to better configure the instruction set for a

particular program.

A RISP processor, aimed to validate the proof of

concept of [3], was developed by [5] adding a

reconfigurable unit to new instructions reconfiguration

and a control unit where different instruction sets were

implemented, those sets could be chosen using privileged

instructions according to applications purpose.

3. CABARE ARCHITECTURE

Cabare is a reconfigurable general purpose processor

designed with a few instructions set and capable of

interpreting new instructions. The design of Cabare is

based on the Altera's didactic processor [1], [2]. Being

developed thinking on the Altera DE2 Development

Board our processor has all the elements seen on Figure 1

and has a 7 Segment decoder, with a multiplexer attached

to it, so the user can choose, using the switches on the

board, which value is showed on the set of eight 7-

segment displays available on the DE2 Board.

The processor has 11 general purpose registers (R0 to

R11), a program counter register (R12), an ALU with its

Accumulator Register (A) and a Register G that holds

ALU operations results. Communication with the

memory is done using the signals from DIN, DOUT,

ADDR, W and R where: DIN (Data In) is the signal

through which the processor receives data from memory;

DOUT (Data Out) is the registered data output signal to

the memory; ADDR (Address) is the registered memory

read and write address; the W and R signals are

respectively the write and read control signal to the

memory. The IR register stores the current instruction

being executed on the Control Unit, the final element is a

multiplexer to choose what goes on the bus, its inputs are:

All the registers (R0 – R12), DIN, G and Mask. Mask is a

32 bits signal, the Control Unit can use it to send

constants to the bus. The ALU has 3 flags Z, S and CY to

indicate the occurrence of Zero, Signal or Carry

conditions on the ALU last operation.

There are two signals that control the start of

operation on the processor, those signals are: RUN and

RESET each one of those signals is connected to a

board’s push button. The RESET signal sets the registers

to a start value of 0 and the PC (Program Counter) to

point to the first instruction. The RUN signal is used to

resume the processor after a breakpoint.

Cabare uses a RISP architecture, there are 20 different

operations supported by the CPU and 11 reserved

Operation Codes for future instructions there are 32

operations code for reconfigurable instructions. This

especial kind of operation code is not hardwired defined

on the Control Unit they are instead, defined as a set of

micro-instructions created by the user (programmer or

compiler) and stored on the main memory. An operation

code is divided in two parts, the first (3 bits) indicates if

this is a common or a reconfigurable instruction. If these

bits are all 0 this is a common instruction if they are all 1

this means it is a reconfigurable instruction. The second

part is the code that specifies the instruction.

The execution of a reconfigurable instruction can be

divided in 3 steps, they are: (i) fetch the reconfiguration

table, find the address of the first micro-instruction on the

main memory; (ii) fetch the micro-instruction and execute

it; (iii) fetch next micro-instructions and execute them

until the bit end is set. The reconfiguration table is always

located at the address 0xFFFXXXXX where XXXXX are

the current operation code five less significant bits.

A reconfigurable instruction is a set of n 32 bit words.

Each word describes a micro-instruction. Bit fields on

this 32 bits word describe a set of options: ALU

operations; BUS selection; Write Enable of each

addressable register; memory communication and so on.

Using the reconfiguration function is possible to

create conditional and unconditional jumps inside the

states of a reconfigurable instruction, this is done by the

control unit using the first 4 bits field to create a jump

micro-instruction, this jump may be related to the state of

the last ALU operation such as zero, carry or negative

results, allowing the programmer to create complex new

reconfigurable instructions. The 4 bits are interpreted by

the control unit as Table 1 shows:

Table 1 - Jump Microinstruction

4 First Bits Action

0000 No Jump

0001 Jump if ALU flag zero = 0

0010 Jump if ALU flag zero = 1

0011 Jump if ALU flag signal = 0

0100 Jump if ALU flag signal = 1

0101 Jump if ALU flag carry = 0

0110 Jump if ALU flag carry = 1

0111 Always jump

If the 4 first bits are different from 0000 the others 28

bits are interpreted as the memory address to jump for the

next micro-instruction, this enables a greater level of

reconfiguration to the processor.

On a reconfiguration word there is a 3-bits field that

specifies the ALU operation. The operations currently

supported are shown on Table 2.

Table 2 - ALU Operations

Signal Operation

000 ADD

001 SUB

010 AND

011 OR

100 NOT A

101 Transparency

110 Shift Right

111 Shift Left

The bits 25 to 12 are called R0In to R12In they write-

enable of each register on the processor. The MUX bits

are the selection of the multiplexer, used as shown in

Table 3

Figure 1 - Cabare Architecture

Table 3 - Multiplexer Options

MUX Multiplex Value Out

0000 R0

0001 R1

... ...

1100 R12

1101 Mask

1110 G

1111 DIN

The IR, A, G, Dout and ADDR bits, on a

reconfiguration word, are write-enable for each of this

registers. The WD and RD enable writing and reading to

the memory respectively.

The processor also has a special instruction BRK to

set a breakpoint; this instruction specifies a memory

address where a breakpoint should occur when the

processor reaches the instruction on this address it pauses

waiting for a key to be pressed to resume the execution.

This instruction is especially useful on debugging

applications written to Cabare since it allows the

developer to pause the execution and to see the contents

of every register on the register bank and the registers A

and G using the board’s 7-segment display.

From the set of instructions an assembly language and

an assembler tool were developed. The assembler

generates the .mif (memory initialization file) which is

used by the synthesis tool to create the first data resident

on memory. The current language supports: comments,

every instruction, labels, and data initialization. Through

data initialization it is possible the definition of

reconfigurable instructions. The definition of a

reconfigurable instruction is made setting the micro-

instructions code on a memory location (or on several

memory words).

Since Cabare reads its instructions from a memory

module, initially all programming was done writing a mif

(memory initialization file) with every instruction to be

executed. This kind of programming is too hard, time

consuming and error prone, even the debugging and

correction of a simple application may imply on hours of

code writing. To minimize this problem an assembler was

developed, so the programmer can use common low level

program techniques to create programs such as labels.

The assembler tool allows the programmer to write

using mnemonics which ease the development and

understanding of programs to Cabare processors,

currently this assembler can produce code using all

cabare instruction set and provides means to the

programmer to describe the reconfiguration instructions,

for now each micro-instruction, of a reconfigurable

instruction, still needs to be described as a 32 bits

hexadecimal value.

Using the assembler tool the programmer can write

code and describe it own reconfigurable instructions the

definition of a reconfigurable instruction is made using a

special section on assembler code called .data, this way

the programmer declares a data region and put it a name

so he can call this new instruction using the & operator as

shown on the example below:

3.1 Memory Operations

The memory was implemented as a RAM memory

using Altera’s megafunction, the memory is organized as

8192 words of 32 bits each. The connection scheme of

this component is shown on Figure 2.

From Figure 2 one can see the read address and write

address are the same. The processor works activating the

READ or the WRITE signals on the rising edge of the

clock, on a write operation the data to be written on the

memory is sent by the DOUT signal on a read operation

the DIN is connected to the processor to send the data.

There are two types of memory operations on the

Cabare processor the LOAD, STORE operations, so the

communication with the memory module is very simple

as shown on Figure 2

The ADDR, W, R and DIN are signals from the

Cabare processor. A LOAD operation is triggered by the

R signal as the STORE operation is triggered by the W

signal.

4. RESULTS

The elements on this processor were prototyped and

tested on a FPGA using the Altera DE2 Development

Board with EP2C35F672C6 from Cyclone II family. The

complete architecture that includes the processor, a 7-

segment decoder and the memory used 1460 Logic Cells

meaning 4% of Cyclone’s FPGA. The max Frequency

our design may run is 50.63 MHz.

The distribution of logic cells can be seen on Table 4

the MUX element act as a bus on controlled by the

control unit as can be seen the area is dominated by the

register bank which occupies 29% of our architecture.

Figure 2 - Memory module

.data reconf01 #0A000140

.data reconf02 #00000820

.data reconf03 #0A800E00

.data reconf04 #0A000140

.data reconf05 #00000020

.data reconf06 #0A800E01

mvi r1,#5

mvi r8,#4

mvi r0,#2

&reconf01

halt

Table 4 - Distribution of Logic Cells

Element Logic Cells (% of full design)

Control Unit 222 (15%)

ALU 218 (15%)

Memory 35 (2%)

Registers Bank 423 (29%)

Mux 360 (25%)

7-segment decoder 56 (3%)

Sample applications were developed and tested using

Cabare and the assembler tool, those applications

included integer square root calculation and matrix

multiplication.

5. CONCLUSIONS AND FUTURE WORK

As an educational processor designed and prototyped

on FPGA the CABARE processor not only showed as a

complete example of a reconfigurable processor, but also

as a good platform for developing applications that uses

the paradigm of reconfigurable instruction set.

The area used by the full design is small enough

(only 4% of Cyclone II FPGA) to use more than one

processor as a processing element on an MPSoC. An

MPSoC with Cabare using a Network on Chip as

interconnection mechanism is being developed which can

provide a tool to develop and to analyze parallel

applications development.

There is still space for new standard instructions

which can be implemented on the processor datapath as

well as may be implemented on the ALU new operations

improve the processor capability to accept more general

purpose applications. New modules to interfaces with

other DE2 peripherals as the LCD display and others are

being developed.

6. REFERENCES

[1] ALTERA. Altera Tutorials and Lab Exercises.

Available at:

http://www.altera.com/education/univ/materials/man

ual/unv-lab-manual.html. Accessed: sep. 2008.

[2] ALTERA. DE2 Development and Education Board.

Available at:

http://www.altera.com/education/univ/materials/boar

ds/unv-de2-board.html. Accessed: sep. 2008.

[3] BARAT, F.; LAUWEREINS, R. Reconfigurable

Instruction Set Processors: A Survey. In: RSP ’00:

Proceedings of the 11th IEEE International

Workshop on Rapid System Prototyping (RSP 2000).

Washington, DC, USA: IEEE Computer Society,

2000. p. 168. ISBN 0-7695-0668-2.

[4] CARRILLO, J. E.; CHOW, P. The effect of

reconfigurable units in superscalar processors. In:

FPGA ’01: Proceedings of the 2001 ACM/SIGDA

ninth international symposium on Field

programmable gate arrays. New York, NY, USA:

ACM Press, 2001. p. 141–150. ISBN 1-58113-341-3.

[5] CASILLO. L. A. Design and Implementation in

FPGA of a processor with reconfigurable instruction

set using VHDL. Master. Informatics and Applied

Mathematics Department. Federal University of Rio

Grande do Norte, Natal, 2005, 143 p.

[6] HAUSER, J. R.;WAWRZYNEK, J. Garp: a MIPS

processor with a reconfigurable coprocessor. In:

FCCM ’97: Proceedings of the 5th IEEE Symposium

on FPGA-Based Custom Computing Machines

(FCCM ’97). Washington, DC, USA: IEEE

Computer Society, 1997. p. 12. ISBN 0-8186-8159-

4.

[7] LIU, J. et al. Variable Instruction Set Architecture

and Its Compiler Support. IEEE Trans. Comput.,

IEEE Computer Society, Washington, DC, USA, v.

52, n. 7, p. 881–895, 2003. ISSN 0018-9340.

[8] RAZDAN, R.; SMITH, M. D. A high-performance

microarchitecture with hardware programmable

functional units. In: MICRO 27: Proceedings of the

27th annual international symposium on

Microarchitecture. New York, NY, USA: ACM

Press, 1994. p. 172–180. ISBN 0-89791-707-3.

[9] WIRTHLIN, M. J. A dynamic instruction set

computer. In: FCCM ’95: Proceedings of the IEEE

Symposium on FPGA’s for Custom Computing

Machines. Washington, DC, USA: IEEE Computer

Society, 1995. p. 99. ISBN 0-8186-7086-X.

