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ABSTRACT 

 

Reconfigurable architectures combine the flexibility of 

general purpose processors and the efficiency of ASIC 

(Application Specific Integrated Circuit), this paper first 

discuss the current reconfiguration related works then it 

describes a general purpose processor that uses control 

unit reconfiguration to achieve flexibility and efficiency. 

The architecture was completely prototyped and tested on 

FPGA (Field Programmable Gate Array) along with a 

memory module and an assembler tool that generates 

code to the processor, results show that there are 

minimum area requirements and the architecture may 

expand to add new instructions or to be used as part of 

another SoC. 

 

1. INTRODUCTION 

 

The systems using general purpose processors has 

clearly presented as the standard on desktop computers 

specially for its flexibility of application, on the other 

hand embedded devices industry has developed ASIC as 

a low energy highly efficiency platform since those ASIC 

can perform specific tasks with minimum resource use. 

The reconfigurable architecture offers the advantage of 

using a specialized instruction set, as in an ASIC 

architecture, and the flexibility of general purpose 

processors. 

Cabare (Computer Architecture BAsed on 

REconfiguration) uses a control unit based 

reconfiguration, so the developer may create his own 

instructions based on control of the signals inside the 

processor. Among reconfigurable processor classes, the 

RISP (Reconfigurable Instruction Set Processors) began, 

recently, to be more explored, due it allows dynamic 

reconfiguration of the instructions set as the instruction 

pattern (format, operands, etc.). 

The RISP processors can be used in multimedia 

applications, digital signal processing, cryptography, etc. 

Besides that, in consequence of its particular features, 

related to internal logic and change of instructions, they 

become issue to research and academic works involving 

computer architectures and microprocessors in computing 

engineering and computing science graduation courses. 

Next section we discuss the current efforts on 

processor reconfiguration, section 3 describes deeply our 

approach and the architecture of Cabare section 4 shows 

results of prototyping and test, finally section 5 shows our 

conclusions and future works. 

 

2. RELATED WORKS 

During last years many Reconfigurable processor 

were developed and evolved with the available 

technology, trying to solve new challenges on industrial 

and academic areas.  

The first called reconfigurable processor was PRISC 

(Programmable Instruction Set Computer), in 1994 in [8]. 

PRISC was the first to use a RFU on a MIPS datapath. 

Reconfiguration based processor development leaded to 

the creation of DISC (Dynamic Instruction Set Computer) 

by [9] using partial reconfigurable FPGAs. A Hybrid 

architecture called GARP developed by [6] using a FPGA 

as a slave functional unit placed on the same location of 

the processor supporting multicycle operations. In 2001 

[4] created the OneChip architecture, this architecture 

integrates a reconfigurable unit inside a superscalar RISC 

pipeline processor. The VISC (Variable Instruction Set 

Communications Architecture) developed by [7] uses a 

dictionary to define the type of each instruction allowing 

the complier to better configure the instruction set for a 

particular program.  

A RISP processor, aimed to validate the proof of 

concept of [3], was developed by [5] adding a 

reconfigurable unit to new instructions reconfiguration 

and a control unit where different instruction sets were 

implemented, those sets could be chosen using privileged 

instructions according to applications purpose. 

 

3. CABARE ARCHITECTURE 

 

Cabare is a reconfigurable general purpose processor 

designed with a few instructions set and capable of 

interpreting new instructions. The design of Cabare is 

based on the Altera's didactic processor [1], [2]. Being 

developed thinking on the Altera DE2 Development 

Board our processor has all the elements seen on Figure 1 

and has a 7 Segment decoder, with a multiplexer attached 

to it, so the user can choose, using the switches on the 

board, which value is showed on the set of eight 7-

segment displays available on the DE2 Board. 



The processor has 11 general purpose registers (R0 to 

R11), a program counter register (R12), an ALU with its 

Accumulator Register (A) and a Register G that holds 

ALU operations results. Communication with the 

memory is done using the signals from DIN, DOUT, 

ADDR, W and R where: DIN (Data In) is the signal 

through which the processor receives data from memory; 

DOUT (Data Out) is the registered data output signal to 

the memory; ADDR (Address) is the registered memory 

read and write address; the W and R signals are 

respectively the write and read control signal to the 

memory. The IR register stores the current instruction 

being executed on the Control Unit, the final element is a 

multiplexer to choose what goes on the bus, its inputs are: 

All the registers (R0 – R12), DIN, G and Mask. Mask is a 

32 bits signal, the Control Unit can use it to send 

constants to the bus. The ALU has 3 flags Z, S and CY to 

indicate the occurrence of Zero, Signal or Carry 

conditions on the ALU last operation. 

There are two signals that control the start of 

operation on the processor, those signals are: RUN and 

RESET each one of those signals is connected to a 

board’s push button. The RESET signal sets the registers 

to a start value of 0 and the PC (Program Counter) to 

point to the first instruction. The RUN signal is used to 

resume the processor after a breakpoint. 

Cabare uses a RISP architecture, there are 20 different 

operations supported by the CPU and 11 reserved 

Operation Codes for future instructions there are 32 

operations code for reconfigurable instructions. This 

especial kind of operation code is not hardwired defined 

on the Control Unit they are instead, defined as a set of 

micro-instructions created by the user (programmer or 

compiler) and stored on the main memory. An operation 

code is divided in two parts, the first (3 bits) indicates if 

this is a common or a reconfigurable instruction. If these 

bits are all 0 this is a common instruction if they are all 1 

this means it is a reconfigurable instruction. The second 

part is the code that specifies the instruction. 

The execution of a reconfigurable instruction can be 

divided in 3 steps, they are: (i) fetch the reconfiguration 

table, find the address of the first micro-instruction on the 

main memory; (ii) fetch the micro-instruction and execute 

it; (iii) fetch next micro-instructions and execute them 

until the bit end is set. The reconfiguration table is always 

located at the address 0xFFFXXXXX where XXXXX are 

the current operation code five less significant bits. 

A reconfigurable instruction is a set of n 32 bit words. 

Each word describes a micro-instruction. Bit fields on 

this 32 bits word describe a set of options: ALU 

operations; BUS selection; Write Enable of each 

addressable register; memory communication and so on. 

Using the reconfiguration function is possible to 

create conditional and unconditional jumps inside the 

states of a reconfigurable instruction, this is done by the 

control unit using the first 4 bits field to create a jump 

micro-instruction, this jump may be related to the state of 

the last ALU operation such as zero, carry or negative 

results, allowing the programmer to create complex new 

reconfigurable instructions.  The 4 bits are interpreted by 

the control unit as Table 1 shows: 

 

 

Table 1 - Jump Microinstruction 

4 First Bits Action 

0000 No Jump 

0001  Jump if ALU flag zero = 0 

0010 Jump if ALU flag zero = 1 

0011 Jump if ALU flag signal = 0 

0100 Jump if ALU flag signal = 1 

0101 Jump if ALU flag carry = 0 

0110 Jump if ALU flag carry = 1 

0111 Always jump 

 

If the 4 first bits are different from 0000 the others 28 

bits are interpreted as the memory address to jump for the 

next micro-instruction, this enables a greater level of 

reconfiguration to the processor. 

On a reconfiguration word there is a 3-bits field that 

specifies the ALU operation. The operations currently 

supported are shown on Table 2. 

Table 2 - ALU Operations 

Signal Operation 

000 ADD 

001 SUB 

010 AND 

011 OR 

100 NOT A 

101 Transparency 

110 Shift Right 

111 Shift Left 

 

The bits 25 to 12 are called R0In to R12In they write-

enable of each register on the processor. The MUX bits 

are the selection of the multiplexer, used as shown in 

Table 3 

Figure 1 - Cabare Architecture 



Table 3 - Multiplexer Options 

MUX Multiplex Value Out 

0000 R0 

0001 R1 

... ... 

1100 R12 

1101 Mask 

1110 G 

1111 DIN 

The IR, A, G, Dout and ADDR bits, on a 

reconfiguration word, are write-enable for each of this 

registers. The WD and RD enable writing and reading to 

the memory respectively. 

The processor also has a special instruction BRK to 

set a breakpoint; this instruction specifies a memory 

address where a breakpoint should occur when the 

processor reaches the instruction on this address it pauses 

waiting for a key to be pressed to resume the execution. 

This instruction is especially useful on debugging 

applications written to Cabare since it allows the 

developer to pause the execution and to see the contents 

of every register on the register bank and the registers A 

and G using the board’s 7-segment display. 

From the set of instructions an assembly language and 

an assembler tool were developed. The assembler 

generates the .mif (memory initialization file) which is 

used by the synthesis tool to create the first data resident 

on memory. The current language supports: comments, 

every instruction, labels, and data initialization. Through 

data initialization it is possible the definition of 

reconfigurable instructions. The definition of a 

reconfigurable instruction is made setting the micro-

instructions code on a memory location (or on several 

memory words). 

Since Cabare reads its instructions from a memory 

module, initially all programming was done writing a mif 

(memory initialization file) with every instruction to be 

executed. This kind of programming is too hard, time 

consuming and error prone, even the debugging and 

correction of a simple application may imply on hours of 

code writing. To minimize this problem an assembler was 

developed, so the programmer can use common low level 

program techniques to create programs such as labels.  

The assembler tool allows the programmer to write 

using mnemonics which ease the development and 

understanding of programs to Cabare processors, 

currently this assembler can produce code using all 

cabare instruction set and provides means to the 

programmer to describe the reconfiguration instructions, 

for now each micro-instruction, of a reconfigurable 

instruction, still needs to be described as a 32 bits 

hexadecimal value. 

Using the assembler tool the programmer can write 

code and describe it own reconfigurable instructions the 

definition of a reconfigurable instruction is made using a 

special section on assembler code called .data, this way 

the programmer declares a data region and put it a name 

so he can call this new instruction using the & operator as 

shown on the example below: 

 

 

3.1 Memory Operations 

The memory was implemented as a RAM memory 

using Altera’s megafunction, the memory is organized as 

8192 words of 32 bits each. The connection scheme of 

this component is shown on Figure 2. 

From Figure 2 one can see the read address and write 

address are the same. The processor works activating the 

READ or the WRITE signals on the rising edge of the 

clock, on a write operation the data to be written on the 

memory is sent by the DOUT signal on a read operation 

the DIN is connected to the processor to send the data. 

There are two types of memory operations on the 

Cabare processor the LOAD, STORE operations, so the 

communication with the memory module is very simple 

as shown on Figure 2 

The ADDR, W, R and DIN are signals from the 

Cabare processor. A LOAD operation is triggered by the 

R signal as the STORE operation is triggered by the W 

signal. 

 

4. RESULTS 

 

The elements on this processor were prototyped and 

tested on a FPGA using the Altera DE2 Development 

Board with EP2C35F672C6 from Cyclone II family. The 

complete architecture that includes the processor, a 7-

segment decoder and the memory used 1460 Logic Cells 

meaning 4% of Cyclone’s FPGA. The max Frequency 

our design may run is 50.63 MHz. 

The distribution of logic cells can be seen on Table 4 

the MUX element act as a bus on controlled by the 

control unit as can be seen the area is dominated by the 

register bank which occupies 29% of our architecture. 

Figure 2 - Memory module 

.data reconf01 #0A000140 

.data reconf02 #00000820 

.data reconf03 #0A800E00 

.data reconf04 #0A000140 

.data reconf05 #00000020 

.data reconf06 #0A800E01 

 

mvi r1,#5 

mvi r8,#4 

mvi r0,#2 

&reconf01 

halt 



Table 4 - Distribution of Logic Cells 

Element Logic Cells (% of full design) 

Control Unit 222 (15%) 

ALU 218 (15%) 

Memory 35 (2%) 

Registers Bank 423 (29%) 

Mux 360 (25%) 

7-segment decoder 56 (3%) 

Sample applications were developed and tested using 

Cabare and the assembler tool, those applications 

included integer square root calculation and matrix 

multiplication. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

As an educational processor designed and prototyped 

on FPGA the CABARE processor not only showed as a 

complete example of a reconfigurable processor, but also 

as a good platform for developing applications that uses 

the paradigm of reconfigurable instruction set. 

The area used by the full design is small enough 

(only 4% of Cyclone II FPGA) to use more than one 

processor as a processing element on an MPSoC. An 

MPSoC with Cabare using a Network on Chip as 

interconnection mechanism is being developed which can 

provide a tool to develop and to analyze parallel 

applications development. 

There is still space for new standard instructions 

which can be implemented on the processor datapath as 

well as may be implemented on the ALU new operations 

improve the processor capability to accept more general 

purpose applications. New modules to interfaces with 

other DE2 peripherals as the LCD display and others are 

being developed. 
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