
A FPGA FFT CORE IMPLEMENTATION

Rolim, Arthur; Lima, Manoel

Federal University of Pernambuco, CIn

ABSTRACT

Advances in field programmable gate array (FPGA)

technology, velocity, low power-consumption, short

development time, low cost and parallelism, have led to

dramatic improvements in single and double precision

floating-point performance. This paper presents a Fast

Fourier Transform (FFT) on FPGAs using IEEE 754

single and double precision float point arithmetic. A

custom VHDL generator of float point arithmetic cores

called FloCoPo is formed for general purpose computer

arithmetic FPGA implementations. The algorithm is

implemented with and without arithmetic improvements

on the butterfly unit design and good difference between

arithmetic cores quantities was found, witch results on

great reduce of FPGA area. A pipelined version from the

FFT was chosen, because the arithmetic cores are also

pipelined and this reduces main core complexity and due

to the fact that, in practice, FFTs often process a stream of

data.

1. INTRODUCTION

Fixed-point applications have, for long time, been

accelerated with FPGAs. As FPGAs technology matured,

the size and the power of parallelism grew along with it.

This was the trigger for many application designers to

create more applications. It also meant that the

performance of FPGAs was growing faster than that of

CPUs[1].

In this scenario, floating point numbers, witch

demands a great area and high velocity, now can be used

with FPGAs. They have the ability to represent a good

approximation and dynamic range for real numbers

representations, so that floating point algorithms are

frequently used in scientific applications, which require

millions and millions of calculations per second, such as

seismic calculations, image processing and speech

recognition [2].

Discrete Fourier Transform (DFT) and its fast

algorithm, Fast Fourier Transform (FFT), are the more

important algorithms in digital signal processing. For a

long time, FFTs were developed using fixed-number

arithmetic in FPGAs, although for high precision

scientific applications it wasn’t accurate enough [3].

With the FPGA evolution, FFT is a next step in exploring

the floating point capabilities [3].

This paper will present a brief study about the FFT,

design stages for main core implementation and butterfly

arithmetic optimizations for FPGA area reduction.

2. FAST FOURIER TRANSFORM

Figure 1. DIF FFT for a length-8 signal

The fundamental calculation of the N point DFT is

described as:

1,..,1,0,][][
1

0

2

−==∑
−

=

−

NkenxkX
N

n

nk
N

j
π

;

where the phase factor is n
j

N eW

π2
−

=

This algorithm is an optimized implementation of the

DFT and provides frequency domain representation for a

signal in time domain. The number of complex

multiplication and addition operations, due to the phase

factor, required by the simple DFT has order of N². The

FFT reduces the number of computations needed for N

points from O(N²) to O(Nlog2N). It provides a fast

calculation strategy by using symmetry and periodicity

properties of the phase factor to calculate the DFT.

The calculation is broken into small regular structures

known as butterflies, which differ only in the constants

they use. As a calculation method, decimation in

frequency (DIF) is used. It rearranges the DFT equation

into two parts: a sum over the even-numbered discrete-

time indices n=[0,2,4,…,N−2] and a sum over the odd-

numbered indices n=[1,3,5,…,N−1].

These transformations are combined according to

equations (2.1) and (2.2), which lead to the calculation of

upper level DFT.

]
2

[][][
N

nxnxkX ++= (2.1)

NW
N

nxnx
N

kX

+−=+]
2

[][]
2

[(2.2)

And these equations (2.1) and (2.2) are arranged into

butterflies to calculate the FFT. Figure 1 shows this

connections for N=8.

3. TESTBENCH PROCESS

Figure 2. Testbench process

To guarantee that all developed cores are processing

and the outputs are correct, a testbench process is used.

Reference models in a high level language, like C++ or

Java, are careful developed so that a great number of

normal and critical situations can be reproduced.

Text files with the input stimulus are created for the

cores simulation in a hardware description language

(HDL) simulator and reference model. After running all

the tests two output files are created: one from the

reference model and the other from HDL simulator.

The two output files are compared and a report is

created, pointing out if the core and the reference model

behave in the same way for every stimulus. Figure 2

describe the whole testbench process.

4. FPGA FFT CORE IMPLEMENTATION

Using the testbench process described above, all cores

were implemented and tested. Next section presents how

the main cores were developed and describes some details

from the internal cores architecture.

4.1. FloPoCo

The arithmetic cores used in this implementation were

created with FloPoCo, a float point core generator. This

tool grants a great flexibility, because an input receives

core operation features, such as: clock, use of pipeline,

simple or double precision and FPGA maker brand. The

output is a synthesizer VHDL file code with the features

of the input.

With this tool it was possible to implement a simple

and double precision pipelined FFT without much rework

only changing the core generator parameters.

4.2. Basic Complex Operations

Basic arithmetic operations, adding and multiplying,

in the FFT are complex. So especial cores were

developed to handle these operations.

4.2.1. Complex Adder

A complex sum is described as:

idbcazz

diczbiaz

)()(

;

21

21

+++=+

+=+= (4.1)

The core was implemented using two adders from the

core generator in parallel. The equation (4.1) shows how

the complex adder is mathematically. Figure 3 shows the

core structure.

Figure 3. Complex Adder

4.2.2. Complex Multiplier

A complex multiplication is described as:

ibcadbdaczz

diczbiaz

)()(

;

21

21

++−=⋅

+=+= (4.2)

The core was built with four multipliers and two

adders, two multipliers and one adder are connected in

cascade to compute the real part and the others for the

imaginary part, although the real part needs float point

‘not’ between the stages to adjust the result, as the

equation (4.2) and figure 4 shows.

Figure 4. Complex Multiplier

4.3. Butterfly

The butterfly operation is the heart of the FFT and it’s

composed with two complex adders and one complex

multiplier, the only difference between all of them is the

‘w’ input.

Due the ‘w’ periodic and sinusoidal nature, some

values are always the same for every size of FFT, witch

can lead to some arithmetic core usage reducing.

To maintain the synchronization of the pipeline FFT

some FIFOs were introduced in the core, although for

simplicity they were omitted from the blocks diagram.

4.3.1. Normal Butterfly

A normal butterfly operation is described as:

)('

'

LOWUPLOW

LOWUPUP

zzwz

zzz

−⋅=

+=
 (4.3)

In this core the ‘w’ input can assume any float point

value. It has two complex adders and a complex

multiplier, as the equations (4.3) and the figure 5 shows.

Figure 5. Normal Butterfly

4.3.2. Butterfly (1,0)

When the ‘w’ assumes the values w=1+0i, the

equation (4.3) can be replaced for:

LOWUPLOW

LOWUPUP

zzz

zzz

−

+=

'

'
 (4.4)

In this case, the butterfly can execute its operation

without the complex multiplication, only using two

complex adders, as the equation (4.4) and figure 6 shows.

Figure 6. Butterfly (1,0)

4.3.2. Butterfly (0,-1)

When the ‘w’ assumes the values w=0-1i, the equation

(4.3) can be replaced for:

)()(

)('

'

aibbiai

zziz

zzz

LOWUPLOW

LOWUPUP

−=+⋅−

⇒−⋅−=

+=

 (4.5)

The butterfly can compute its operation without the

complex multiplication, but it will have to make some

adjust on the core exit to archive the same result. It will

have to interchange low subtraction result and use a float

point ‘not’, as the equation (4.5) and figure 7 shows.

Figure 7. Butterfly (0,-1)

5. RESULTS

Following the figure 1 and the reference model FFT, a

three pipelined FFT with simple and double precision

were developed.

With the arithmetic optimizations in the butterfly unit,

the core main cores of the FFT with N equals 2, 4 and 8

archived a good reduction of float point cores from the

normal to the optimized version of the FFT, as the table 1

and 2 shows.

FP Cores Number FFT-2 FFT-4 FFT-8

FP Adders 6 24 72

FP Multipliers 4 12 48

Table 1. Normal Version

FP Cores Number FFT-2 FFT-4 FFT-8

FP Adders 4 16 52

FP Multipliers 0 0 8

Table 2. Optimized Version

6. CONCLUSION

In this paper, a pipelined float point FFT

implementation on a FPGA was implemented and tested,

but to archive full potential from the FPGAs

architectures, there are many problems to be solved, like

memory access and core size, until its usage became

reality in scientific applications.

7. REFERENCES

[1] K. D. “Underwood. FPGAs vs. CPUs: Trends in peak

floating-point performance,”. In Proceedings of the ACM

International Symposium on Field Programmable Gate Arrays,

Monterrey, CA, February 2004.

[2] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S.

Hemmert, “Architectural Modifications to Enhance the

Floating-Point Performance of FPGAs,” Sandia National

Laboratories and the National Science Foundation, USA,

December 2006.

[3] O. Callanan; D. Gregg; A. Nisbet; M. Peardon, “High

Performance Scientific Computing Using FPGAs with IEEE

Floating Point and Logarithmic Arithmetic for Lattice QCD,”

International Conference on Field Programmable Logic and

Applications, Madrid, 2006.

