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ABSTRACT 

 

Advances in field programmable gate array (FPGA) 

technology, velocity, low power-consumption, short 

development time, low cost and parallelism, have led to 

dramatic improvements in single and double precision 

floating-point performance.  This paper presents a Fast 

Fourier Transform (FFT) on FPGAs using IEEE 754 

single and double precision float point arithmetic.  A 

custom VHDL generator of float point arithmetic cores 

called FloCoPo is formed for general purpose computer 

arithmetic FPGA implementations.  The algorithm is 

implemented with and without arithmetic improvements 

on the butterfly unit design and good difference between 

arithmetic cores quantities was found, witch results on 

great reduce of FPGA area.  A pipelined version from the 

FFT was chosen, because the arithmetic cores are also 

pipelined and this reduces main core complexity and due 

to the fact that, in practice, FFTs often process a stream of 

data. 

 

1. INTRODUCTION 

 

Fixed-point applications have, for long time, been 

accelerated with FPGAs.  As FPGAs technology matured, 

the size and the power of parallelism grew along with it.  

This was the trigger for many application designers to 

create more applications.  It also meant that the 

performance of FPGAs was growing faster than that of 

CPUs[1]. 

In this scenario, floating point numbers, witch 

demands a great area and high velocity, now can be used 

with FPGAs.  They have the ability to represent a good 

approximation and dynamic range for real numbers 

representations, so that floating point algorithms are 

frequently used in scientific applications, which require 

millions and millions of calculations per second, such as 

seismic calculations, image processing and speech 

recognition [2]. 

Discrete Fourier Transform (DFT) and its fast 

algorithm, Fast Fourier Transform (FFT), are the more 

important algorithms in digital signal processing.  For a 

long time, FFTs were developed using fixed-number 

arithmetic in FPGAs, although for high precision 

scientific applications it wasn’t accurate enough [3].  

With the FPGA evolution, FFT is a next step in exploring 

the floating point capabilities [3]. 

This paper will present a brief study about the FFT, 

design stages for main core implementation and butterfly 

arithmetic optimizations for FPGA area reduction. 

 

2. FAST FOURIER TRANSFORM 

 

Figure 1. DIF FFT for a length-8 signal 

 

The fundamental calculation of the N point DFT is 

described as: 
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This algorithm is an optimized implementation of the 

DFT and provides frequency domain representation for a 

signal in time domain.  The number of complex 

multiplication and addition operations, due to the phase 

factor, required by the simple DFT has order of N².  The 

FFT reduces the number of computations needed for N 

points from O(N²) to O(Nlog2N).  It provides a fast 

calculation strategy by using symmetry and periodicity 

properties of the phase factor to calculate the DFT. 

The calculation is broken into small regular structures 

known as butterflies, which differ only in the constants 

they use.  As a calculation method, decimation in 

frequency (DIF) is used.  It rearranges the DFT equation 

into two parts: a sum over the even-numbered discrete-

time indices n=[0,2,4,…,N−2] and a sum over the odd-

numbered indices n=[1,3,5,…,N−1]. 

These transformations are combined according to 

equations (2.1) and (2.2), which lead to the calculation of 

upper level DFT. 
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And these equations (2.1) and (2.2) are arranged into 

butterflies to calculate the FFT. Figure 1 shows this 

connections for N=8. 

 



3. TESTBENCH PROCESS 

 

 

Figure 2. Testbench process 

To guarantee that all developed cores are processing 

and the outputs are correct, a testbench process is used.  

Reference models in a high level language, like C++ or 

Java, are careful developed so that a great number of 

normal and critical situations can be reproduced. 

Text files with the input stimulus are created for the 

cores simulation in a hardware description language 

(HDL) simulator and reference model.  After running all 

the tests two output files are created: one from the 

reference model and the other from HDL simulator. 

The two output files are compared and a report is 

created, pointing out if the core and the reference model 

behave in the same way for every stimulus.  Figure 2 

describe the whole testbench process. 

 

4. FPGA FFT CORE IMPLEMENTATION 

 

Using the testbench process described above, all cores 

were implemented and tested.  Next section presents how 

the main cores were developed and describes some details 

from the internal cores architecture. 

 

4.1. FloPoCo 

 

The arithmetic cores used in this implementation were 

created with FloPoCo, a float point core generator.  This 

tool grants a great flexibility, because an input receives 

core operation features, such as: clock, use of pipeline, 

simple or double precision and FPGA maker brand.  The 

output is a synthesizer VHDL file code with the features 

of the input. 

With this tool it was possible to implement a simple 

and double precision pipelined FFT without much rework 

only changing the core generator parameters. 

 

4.2. Basic Complex Operations 

 

Basic arithmetic operations, adding and multiplying, 

in the FFT are complex. So especial cores were 

developed to handle these operations. 

 

4.2.1. Complex Adder 

 

A complex sum is described as: 
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The core was implemented using two adders from the 

core generator in parallel. The equation (4.1) shows how 

the complex adder is mathematically. Figure 3 shows the 

core structure. 

 

 

Figure 3. Complex Adder 

 

4.2.2. Complex Multiplier 

 

A complex multiplication is described as: 
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The core was built with four multipliers and two 

adders, two multipliers and one adder are connected in 

cascade to compute the real part and the others for the 

imaginary part, although the real part needs float point 

‘not’ between the stages to adjust the result, as the 

equation (4.2) and figure 4 shows. 

 

 

Figure 4. Complex Multiplier 

 

4.3. Butterfly 

 

The butterfly operation is the heart of the FFT and it’s 

composed with two complex adders and one complex 

multiplier, the only difference between all of them is the 

‘w’ input. 

Due the ‘w’ periodic and sinusoidal nature, some 

values are always the same for every size of FFT, witch 

can lead to some arithmetic core usage reducing. 

To maintain the synchronization of the pipeline FFT 

some FIFOs were introduced in the core, although for 

simplicity they were omitted from the blocks diagram. 

 

4.3.1. Normal Butterfly 

 

A normal butterfly operation is described as: 
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In this core the ‘w’ input can assume any float point 

value. It has two complex adders and a complex 

multiplier, as the equations (4.3) and the figure 5 shows. 

 

 

Figure 5. Normal Butterfly 

 

4.3.2. Butterfly (1,0) 

 

When the ‘w’ assumes the values w=1+0i, the 

equation (4.3) can be replaced for: 
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In this case, the butterfly can execute its operation 

without the complex multiplication, only using two 

complex adders, as the equation (4.4) and figure 6 shows. 

 

 

 

Figure 6. Butterfly (1,0) 

 

4.3.2. Butterfly (0,-1) 

 

When the ‘w’ assumes the values w=0-1i, the equation 

(4.3) can be replaced for: 
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The butterfly can compute its operation without the 

complex multiplication, but it will have to make some 

adjust on the core exit to archive the same result. It will 

have to interchange low subtraction result and use a float 

point ‘not’, as the equation (4.5) and figure 7 shows. 

 

 

Figure 7. Butterfly (0,-1) 

 

5. RESULTS 

 

Following the figure 1 and the reference model FFT, a 

three pipelined FFT with simple and double precision 

were developed. 

With the arithmetic optimizations in the butterfly unit, 

the core main cores of the FFT with N equals 2, 4 and 8 

archived a good reduction of float point cores from the 

normal to the optimized version of the FFT, as the table 1 

and 2 shows. 

 

FP Cores Number FFT-2 FFT-4 FFT-8 

FP Adders 6 24 72 

FP Multipliers 4 12 48 

Table 1. Normal Version 

FP Cores Number FFT-2 FFT-4 FFT-8 

FP Adders 4 16 52 

FP Multipliers 0 0 8 

Table 2. Optimized Version 

 

6. CONCLUSION 

 

In this paper, a pipelined float point FFT 

implementation on a FPGA was implemented and tested, 

but to archive full potential from the FPGAs 

architectures, there are many problems to be solved, like 

memory access and core size, until its usage became 

reality in scientific applications. 
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