
IMPLEMENTATION OF RSA CRYPTOSYSTEM IMMUNE TO TIMING ATTACKS

Ítalo Sampaio, Jamile Martins, Mila Maracaba, Jardel Silveira and Helano Castro

Universidade Federal do Ceará, LESC

Campus do PICI S/N, Bloco 723

Fortaleza, CE – Brasil

E-mail: {italo, jamile, mila, jardel, helano}@lesc.ufc.br

ABSTRACT

The RSA cryptosystem is one of the most popular and

most efficient known cryptosystems and its safety is

strongly related to the difficulty of breaking it through

mathematic tools. A way to perform an attack against it is

by using side-channel attacks as a timing attack. In this

paper, we describe the FPGA implementation of a

complete 512-bits RSA cryptosystem that makes use of the

Montgomery’s algorithm for modular multiplication. We

show that the implemented cryptosystem is immune to

timing attacks and we compare it with other kinds of

implementations. Finally, we analyze the device utilization

in different FPGA’s by comparing the number of slices

occupied by the implementation.

1. INTRODUCTION

With the advent of the internet, especially in

applications as e-commerce, electronic conversations and

banking transactions, cryptography has become essential to

keep the security of the messages. In all of these

applications, we face the problem of sending confidential

data through an unsafe channel. Cryptography comes as a

solution to this kind of problem, so that only the presumed

receptor of the message is able to understand its contents.

Among the techniques used for cryptography

nowadays, RSA cryptography [8] is the most popular [1].

This popularity comes, in part, thanks to the difficulty of

breaking this kind of cryptography by using mathematical

tools. Thus, attackers have to use alternative methods for

trying to break RSA cryptography. These methods are

known as side-channel attacks and consist on attacking the

physical implementation of the system, instead of attacking

its mathematical formulation. One commonly used form of

side-channel attack is the timing attack.

In the following sections, we describe the architecture

and implementation of a RSA cryptosystem based on the

Montgomery’s modular multiplication algorithm, showing

that the system proposed is immune to timing attacks by

comparing its performance with other implementations of

RSA cryptography.

2. RSA AND MODULAR EXPONENTIATION

The RSA cryptosystem was first proposed in 1978. It is

an example of public key cryptosystem [7], that is, two

keys are used to perform the cryptography: the public, used

to encrypt, and the private, used to decrypt. This system

makes use of two large prime numbers in the generation of

the keys, and its safety lies in the difficulty of factoring

those numbers.

The keys are found in the following way: two big prime

numbers, P and Q, are chosen (nowadays, these numbers

are up to 1024 bits long). After that, their product, N, and

the Euler Totient Function, ���� = �� − 1��	 − 1� are

computed. Then, an integer E is chosen so that it is both

smaller than N and co-prime with ����, that is,

�. �. �. �����, �� = 1. A very common value of E is the

fourth Fermat number, F4 = 2
16

 + 1 = 65537, because this

number is big enough to keep the security of RSA

cryptography, and, at the same time, small enough to make

fast the operation of encrypting. Finally, we compute D, an

integer for which �. � ��� ���� = 1. Thus, we have the

public key (E,N) and the private key (D,N). The encryption

and decryption are performed through the pair of inverse

functions:

 mod
EMessage N Cipher= (2.1)

 mod
DCipher N Message= (2.2)

By observing equations (2.1) and (2.2), we can see that,

to implement a RSA cryptography system, we need to

implement a system that performs the operation of modular

exponentiation. The only difference between the

encryption and decryption is in the key that will be used as

exponent. In the first one, the public key, E, is used, and in

the second, the private key, D.

The modular exponentiation has an extremely

high computational cost due to the magnitude of the

numbers involved. Therefore, it is necessary to break the

exponentiation into several modular multiplications,

making the operation more efficient. For RSA

cryptography, the most used method is known as square
and multiply, due to the fact that it carries out the modular

exponentiation through modular squaring and modular

multiplications.

The square and multiply algorithm, described in [2], is

shown in figure. We can see that this algorithm consists of

a repetition of two operations. The first one is the modular

squaring of the partial result. This can be interpreted as a

modular multiplication of a0 by itself. The second one is

the modular product of the message and the partial result.

Therefore, the modular exponentiation consists basically of

a series of modular multiplications, where only the

operands of these multiplications change.

Figure 1 - Modular Exponentiation algorithm

3. ALGORITHMS FOR MODULAR

MULTIPLICATION

For real-time encryption, it is important to have fast

modular multiplication algorithms, since the performance

of PKC depends primarily on efficiency of modular

multiplication.

There are two basic approaches to perform the modular

multiplication, as described in [5]: multiply-then-reduce

and interleaved.

In the first method, the multiplication is done first and,

after this, the module is subtracted from the partial result

repeatedly until the result is achieved. This approach is

quite popular, because it allows the use of very efficient

pre-existent multiplication algorithms, such as the

multiply-and-reduce and the Booth’s algorithm [5], adding

to these algorithms only the logic for the modular

reduction. However, this approach works well only for

small numbers. When used with large numbers, such as in

PKC, the partial product tends to be very large, comparing

to the module, making necessary a large number

of subtractions, which makes the calculation of modular

multiplication very slow.

In the interleaved approach the reduction step is

performed during the multiplication process, as detailed in

[5] and [4]. The main advantage of this approach is the

computing time gain, since the modulation is made as soon

as the result exceeds the module, decreasing the number of

reductions needed. The Montgomery's algorithm [7] uses

this idea. Moreover, it will be shown that this algorithm

has an important characteristic to guarantee timing attack

immunity: the response time of the modular multiplier

does not depend on the values of the operands. That is why

the Montgomery’s multiplier was chosen for this work.

The algorithm for the Montgomery’s modular

multiplication is described in [5].

4. TIMMING ATTACKS

In the RSA cryptography, there is only one method to

mathematically obtain the private key from the public key.

This method consists in factoring the modulus N, obtaining

the two prime numbers P and Q [3]. If an attacker manages

to obtain the two primes, all he has to do is to reproduce

the process to generate the private key from the public key.

The problem with this method is the fact that it is not

always possible to factor the large number N. The

capacity of factoring N is limited by its size, and whenever

computational power increases in a way that this factoring

becomes possible, the size of N can be increased, thus

making impossible to break the cryptosystem.

Figure 2 - The Modular Exponentiator with a generic
modular multiplier

For this reason, the only way to perform an attack

against RSA cryptosystem is by using the side-channel

attacks. In the specific case of timing attack, the attacker

makes the victim to perform several private key operations,

so that he knows the computation time for each operation.

The information about the private key is obtained by

measuring the variations of the time response. The detailed

implementation of the timing attack is not the focus of this

work and is described in [6].

From the discussion above, we can conclude that one

possible way to make the system immune to timing attacks

is to eliminate these variations. In the next section, we will

show that the system implemented in this work presents no

variation in the response time for a fixed key, what leads to

the conclusion that the system is immune against timing

attacks.

5. IMPLEMENTATION AND RESULTS

5.1. Architecture

It was already commented in previous sections that, for

implementing the modular exponentiation, we need

basically a modular multiplier and a control block, which

selects whether the operations are performed and also

which are the correct operands for each operation. Figure 2

shows the architecture of the modular exponentiator using

a generic modular multiplier block, which was

implemented using the Add-and-Shift, Booth’s and

Montgomery’s algorithms, in order to compare the results

obtained in each implementation.

It is important to note that the Modular Exponentiator

Controller block must have control over the Modular

Multiplier, selecting the right inputs for each multiplication

and deciding whether there must be or not a new modular

multiplication. In addition, the controller must make the

whole system to wait while the result of a modular

multiplication is computed. Thus, the controller is

implemented as a Finite State Machine. The states diagram

is shown in figure 3 and the complete architecture for the

Modular Exponentiation using the Montgomery’s modular

multiplier is shown in figure 4.

Figure 3 - State Diagram of the controller

 The states of the finite states machine are described

below:

S0: Clear the inner registers;

S1: Save the value of the input B to the register temp

and load the index i with the position of the most

significant ‘1’ bit;

S2: Compute the modular product (temp*temp) mod

N and save the result to temp;

S3: Check if the bit E[i] is equal to ‘1’;

S4: Compute the modular product (B*temp) mod N

and save the result to temp;

S5: Check if the index i is equal to ‘0’;

S6: Decrement the index i;

S7: Load to the output R the final result that is in the

register temp;

5.2. Implementation

This section describes the process of simulation and

synthesis of the architectures described in the previous

section. The only significant difference among the three

implementations is in the modular multiplication block.

The design of the three distinct modular multipliers was

made by using VHDL and Verilog, and it was based on the

implementation described in [4].

The RSA encryption and decryption blocks were

described in Systemverilog, by instantiating the modular

multiplier blocks, described in their native languages

(VHDL and Verilog).

For each algorithm, we built two versions of the RSA

cryptosystem module, with different bit lengths: one with

16 bits and the other with 512 bits.

Although the 512-bits implementation is not suitable

for practical use [RSA contest], it is a reasonable model for

the actual implementations, which use operands of up to

1024 bits. The 16-bits versions are not suitable for

practical use at all, but it was necessary to build such

versions because the Add-and-Shift and Booth’s

algorithms make the encryption and decryption operations

very slow due to the fact that these algorithms were

Figure 4 - Complete architecture of the Montgomery Modular
Exponentiator

implemented by using the straightforward approach for the

modular multiplication. As in the context of our work we

are only interested in comparing the time response

variations of the three implementations when submitted to

different inputs, only the 16-bits versions will be used to

this purpose, although we will show the results for the 512-

bits implementation of the Montgomery’s algorithm.

For the simulation, we used Cadence NC-Sim software

and for synthesis, Xilinx ISE 9.2.

The 512-bits RSA cryptosystem using Montgomery’s

multiplier was implemented on three different FPGA’s

from the Xilinx family, namely Spartan 3E, Virtex 4 and

Virtex II Pro. The results are shown in the next section.

5.3. Results and its analysis

To perform the time tests, we used the 16-bits

encryption and decryption modules with the Add-and-

Shift, Booth’s and Montgomery’s modules performing the

encryption of words with different sizes, and we measured

the time to perform each operation. Table 1 shows the

timing results obtained for each algorithm with a 100MHz

clock. The major objective of this comparison is to verify

the variation of the response time for each implementation

caused by inputs with different sizes, since this information

could be used for a timing attack. Table 2 shows the results

obtained for the 512 bits implementation of the

Montgomery module.

By observing the results presented in the tables 1 and 2,

we can see that the cryptography module that uses the

Montgomery’s algorithm is the only one that shows no

variation in the response time for any input. The other

algorithms present a significant variation in the response

time. This fact can be exploited for a timing attack, as

Method
Message

length

Encryption

time (ns)

Decryption

time (ns)

Add-and -Shift

2 bits 1.845.105 1.931.425

4 bits 2.256.905 4.463.565

11 bits 1.855.625 3.402.435

14 bits 3.179.245 3.880.775

Booth

2 bits 1.847.985 1.935.085

4 bits 2.259.785 4.467.225

11 bits 1.858.505 3.406.095

14 bits 3.182.125 3.884.435

Montgomery

2 bits 33.985 43.775

4 bits 33.985 43.775

11 bits 33.985 43.775

14 bits 33.985 43.775

Table 1 - Results for the 16-bits implementations with a clock

speed of 100MHz.

Message length
Encryption

time (ns)

Decryption

Time (ns)

2 bits 1.045.830 46.563.160

16 bits 1.045.830 46.563.160

32 bits 1.045.830 46.563.160

160 bits 1.045.830 46.563.160

210 bits 1.045.830 46.563.160

Table 2 - Results for the 512-bits Montgomery

implementation with a clock speed of 100MHz.

FPGA /

Device

#Avaliable

Slices

Used

Slices
Percentage

Spartan 3E /

xc3s250e
4,896 3,680 75%

Virtex 4 /

xc4vfx12
10,944 3,680 33%

Virtex II Pro /

xc2vp30
27,392 3,680 13%

Table 3 – Area results for the 512-bits RSA cryptosystem.

pointed in [6]. In addition, these algorithms present very

low speed due to the fact that the reduction step is

performed after the multiplication. Since the results of the

multiplications tend to be very large, the reduction step

demands a great amount of time to be performed,

increasing the time necessary to perform the cryptography.

On the other hand, the module that uses the Montgomery’s

algorithm proves to be completely immune to timing

attacks, since the response time shows no variation for

different inputs. Besides, the module presents very short

response times, even for the decryption operations, which

are naturally slow.

The area results for the 512-bits RSA cryptosystem

using Montgomery’s multiplier on the three different

FPGA’s are shown in table 3. Note that, although the

implemented module occupies a great amount of the area

available on the Xilinx Spartan 3E, it is absolutely

reasonably to implement it on a Virtex II Pro or even on a

Virtex 4.

6. CONCLUSIONS AND FURTHER WORK

Based in the results shown before, we conclude that the

RSA cryptosystem based in the Montgomery's modular

multiplier proposed in this work has total immunity to

timing attacks, without loss of efficiency.

The physical implementation also shows good results,

since the system was successfully implemented on three

different FPGAs, reaching satisfactory area results.

It is also important to note that the 512-bits key is not a

limit. We can easily increase the number of bits for 1024

or even higher bit lengths. Thus, the module presented is

an efficient and secure solution.

The above factors show that it is reasonably to think

about a silicon implementation of the system, although this

shall be done only after a detailed analysis of the power

consumption of the system.

In the future, we intend to improve the rate between

area and performance. Also, we will analyze the module's

performance for other types of side-channel attacks, as the

fault and power attacks and perform these attacks on the

physical implementation of the system.

7. ACKNOWLEDGEMENTS

The authors are grateful to LESC (Laboratório de

Engenharia de Sistema de Computação), for the support to

this work and also to Xilinx and Cadence for EDA tools

support, provided by their University programs.

8. REFERENCES

 [1] A. Daly, and W. Marnane, “Efficient Architectures for

implementing Montgomery Modular Multiplication and RSA

Modular Exponentiation on Reconfigurable Logic”. In Proc. Of

the ACM/SIGDA 10th International Symposium on FP-Gas, pp.

40-49, February 2002.

[2] C. Giraud, “An RSA Implementation Resistant to Fault

Attacks and to Simple Power Analysis”, IEEE transactions on

computer, v. 55, nº.9, September 2006

[3] D. Boneh, “Twenty years of attacks on the RSA

cryptosystem”, Notices Amer. Math. Soc. 46, pp. 203–213, 1999.

[4] D. Viot, R. Aurélio, H.S. Castro, and R. Jardel, “Modular

Multiplication Algorithm For PKC”. In: Chip in The Pampa,

Gramado, RS, Brazil. VIII SForum on Microelectronics, 2008.

[5] N. Nedjah, and L. Mourelle, “A review of modular

multiplication methods and respective hardware

implementations”. Informatics, nº 30, pp.111–130, 2006.

[6] P. Kocher, “Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS and Other Systems”. Advances in

Cryptology-Crypto'96, Lecture Notes in Computer Science, 1109,

ACM Press, pp 104-113, 1996.

[7] P.L. Montgomery, “Modular Multiplication without Trial

Division”, Mathematics of Computation, v. 44, n. 170, pp. 519-

521, 1985.

[8] R.L. Rivest, A.Shamir, and L.M. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems”,
Communications of the ACM, 21, pp. 120-126, 1978.

