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ABSTRACT 

 
The RSA cryptosystem is one of the most popular and 

most efficient known cryptosystems and its safety is 

strongly related to the difficulty of breaking it through 

mathematic tools. A way to perform an attack against it is 

by using side-channel attacks as a timing attack. In this 

paper, we describe the FPGA implementation of a 

complete 512-bits RSA cryptosystem that makes use of the 

Montgomery’s algorithm for modular multiplication. We 

show that the implemented cryptosystem is immune to 

timing attacks and we compare it with other kinds of 

implementations. Finally, we analyze the device utilization 

in different FPGA’s by comparing the number of slices 

occupied by the implementation. 

 

 

1. INTRODUCTION 
 

With the advent of the internet, especially in 

applications as e-commerce, electronic conversations and 

banking transactions, cryptography has become essential to 

keep the security of the messages. In all of these 

applications, we face the problem of sending confidential 

data through an unsafe channel. Cryptography comes as a 

solution to this kind of problem, so that only the presumed 

receptor of the message is able to understand its contents. 

Among the techniques used for cryptography 

nowadays, RSA cryptography [8] is the most popular [1]. 

This popularity comes, in part, thanks to the difficulty of 

breaking this kind of cryptography by using mathematical 

tools. Thus, attackers have to use alternative methods for 

trying to break RSA cryptography. These methods are 

known as side-channel attacks and consist on attacking the 

physical implementation of the system, instead of attacking 

its mathematical formulation. One commonly used form of 

side-channel attack is the timing attack. 

In the following sections, we describe the architecture 

and implementation of a RSA cryptosystem based on the 

Montgomery’s modular multiplication algorithm, showing 

that the system proposed is immune to timing attacks by 

comparing its performance with other implementations of 

RSA cryptography. 

 

2. RSA AND MODULAR EXPONENTIATION 

 

The RSA cryptosystem was first proposed in 1978. It is 

an example of public key cryptosystem [7], that is, two 

keys are used to perform the cryptography: the public, used 

to encrypt, and the private, used to decrypt. This system 

makes use of two large prime numbers in the generation of 

the keys, and its safety lies in the difficulty of factoring 

those numbers. 

The keys are found in the following way: two big prime 

numbers, P and Q, are chosen (nowadays, these numbers 

are up to 1024 bits long). After that, their product, N, and 

the Euler Totient Function, ���� = �� − 1��	 − 1� are 

computed. Then, an integer E is chosen so that it is both 

smaller than N and co-prime with  ����, that is, 

�. �. �. �����, �� = 1. A very common value of E is the 

fourth Fermat number, F4 = 2
16

 + 1 = 65537, because this 

number is big enough to keep the security of RSA 

cryptography, and, at the same time, small enough to make 

fast the operation of encrypting. Finally, we compute D, an 

integer for which �. � ��� ���� = 1. Thus, we have the 

public key (E,N) and the private key (D,N). The encryption 

and decryption are performed through the pair of inverse 

functions:  

 mod
EMessage N Cipher=  (2.1) 

 mod
DCipher N Message=  (2.2) 

    

By observing equations (2.1) and (2.2), we can see that, 

to implement a RSA cryptography system, we need to 

implement a system that performs the operation of modular 

exponentiation. The only difference between the 

encryption and decryption is in the key that will be used as 

exponent. In the first one, the public key, E, is used, and in 

the second, the private key, D. 

The modular exponentiation has an extremely 

high computational cost due to the magnitude of the 

numbers involved. Therefore, it is necessary to break the 

exponentiation into several modular multiplications, 

making the operation more efficient. For RSA 

cryptography, the most used method is known as square 
and multiply, due to the fact that it carries out the modular 

exponentiation through modular squaring and modular 

multiplications. 

The square and multiply algorithm, described in [2], is 

shown in figure. We can see that this algorithm consists of 

a repetition of two operations. The first one is the modular 

squaring of the partial result. This can be interpreted as a 

modular multiplication of a0 by itself. The second one is 

the modular product of the message and the partial result. 

Therefore, the modular exponentiation consists basically of 

a series of modular multiplications, where only the 

operands of these multiplications change. 



 
Figure 1 - Modular Exponentiation algorithm 
 

3. ALGORITHMS FOR MODULAR 

MULTIPLICATION 

 

For real-time encryption, it is important to have fast 

modular multiplication algorithms, since the performance 

of PKC depends primarily on efficiency of modular 

multiplication. 

There are two basic approaches to perform the modular 

multiplication, as described in [5]: multiply-then-reduce 

and interleaved. 

In the first method, the multiplication is done first and, 

after this, the module is subtracted from the partial result 

repeatedly until the result is achieved. This approach is 

quite popular, because it allows the use of very efficient 

pre-existent multiplication algorithms, such as the 

multiply-and-reduce and the Booth’s algorithm [5], adding 

to these algorithms only the logic for the modular 

reduction. However, this approach works well only for 

small numbers. When used with large numbers, such as in 

PKC, the partial product tends to be very large, comparing 

to the module, making necessary a large number 

of subtractions, which makes the calculation of modular 

multiplication very slow. 

In the interleaved approach the reduction step is 

performed during the multiplication process, as detailed in 

[5] and [4]. The main advantage of this approach is the 

computing time gain, since the modulation is made as soon 

as the result exceeds the module, decreasing the number of 

reductions needed. The Montgomery's algorithm [7] uses 

this idea. Moreover, it will be shown that this algorithm 

has an important characteristic to guarantee timing attack 

immunity: the response time of the modular multiplier 

does not depend on the values of the operands. That is why 

the Montgomery’s multiplier was chosen for this work. 

The algorithm for the Montgomery’s modular 

multiplication is described in [5]. 

 

4. TIMMING ATTACKS 

 

In the RSA cryptography, there is only one method to 

mathematically obtain the private key from the public key. 

This method consists in factoring the modulus N, obtaining 

the two prime numbers P and Q [3]. If an attacker manages 

to obtain the two primes, all he has to do is to reproduce 

the process to generate the private key from the public key. 

The problem with this method is the fact that it is not 

always possible to factor   the large number N. The 

capacity of factoring N is limited by its size, and whenever 

computational power increases in a way that this factoring 

becomes possible, the size of N can be increased, thus 

making impossible to break the cryptosystem. 

 

Figure 2 - The Modular Exponentiator with a generic 
modular multiplier 

 

For this reason, the only way to perform an attack 

against RSA cryptosystem is by using the side-channel 

attacks. In the specific case of timing attack, the attacker 

makes the victim to perform several private key operations, 

so that he knows the computation time for each operation. 

The information about the private key is obtained by 

measuring the variations of the time response. The detailed 

implementation of the timing attack is not the focus of this 

work and is described in [6].  

From the discussion above, we can conclude that one 

possible way to make the system immune to timing attacks 

is to eliminate these variations. In the next section, we will 

show that the system implemented in this work presents no 

variation in the response time for a fixed key, what leads to 

the conclusion that the system is immune against timing 

attacks. 

 

5. IMPLEMENTATION AND RESULTS 

 

5.1. Architecture 

 

It was already commented in previous sections that, for 

implementing the modular exponentiation, we need 

basically a modular multiplier and a control block, which 

selects whether the operations are performed and also 

which are the correct operands for each operation. Figure 2 

shows the architecture of the modular exponentiator using 

a generic modular multiplier block, which was 

implemented using the Add-and-Shift, Booth’s and 

Montgomery’s algorithms, in order to compare the results 

obtained in each implementation. 

It is important to note that the Modular Exponentiator 

Controller block must have control over the Modular 

Multiplier, selecting the right inputs for each multiplication 

and deciding whether there must be or not a new modular 

multiplication. In addition, the controller must make the 

whole system to wait while the result of a modular 

multiplication is computed. Thus, the controller is 

implemented as a Finite State Machine. The states diagram 

is shown in figure 3 and the complete architecture for the 

Modular Exponentiation using the Montgomery’s modular 

multiplier is shown in figure 4. 

 



 
Figure 3 - State Diagram of the controller 

 

 The states of the finite states machine are described 

below: 

S0: Clear the inner registers; 

S1: Save the value of the input B to the register temp 

and load the index i with the position of the most 

significant ‘1’ bit; 

S2: Compute the modular product (temp*temp) mod 

N and save the result to temp; 

S3: Check if the bit E[i] is equal to ‘1’; 

S4: Compute the modular product (B*temp) mod N 

and save the result to temp; 

S5: Check if the index i is equal to ‘0’; 

S6: Decrement the index i; 

S7: Load to the output R the final result that is in the 

register temp; 

 

5.2. Implementation 

 

This section describes the process of simulation and 

synthesis of the architectures described in the previous 

section. The only significant difference among the three 

implementations is in the modular multiplication block. 

The design of the three distinct modular multipliers was 

made by using VHDL and Verilog, and it was based on the 

implementation described in [4]. 

The RSA encryption and decryption blocks were 

described in Systemverilog, by instantiating the modular 

multiplier blocks, described in their native languages 

(VHDL and Verilog). 

For each algorithm, we built two versions of the RSA 

cryptosystem module, with different bit lengths: one with 

16 bits and the other with 512 bits. 

Although the 512-bits implementation is not suitable 

for practical use [RSA contest], it is a reasonable model for 

the actual implementations, which use operands of up to 

1024 bits. The 16-bits versions are not suitable for 

practical use at all, but it was necessary to build such 

versions because the Add-and-Shift and Booth’s 

algorithms make the encryption and decryption operations 

very slow due to the fact that these algorithms were 

 
Figure 4 - Complete architecture of the Montgomery Modular 
Exponentiator 

 

implemented by using the straightforward approach for the 

modular multiplication. As in the context of our work we 

are only interested in comparing the time response 

variations of the three implementations when submitted to 

different inputs, only the 16-bits versions will be used to 

this purpose, although we will show the results for the 512-

bits implementation of the Montgomery’s algorithm. 

For the simulation, we used Cadence NC-Sim software 

and for synthesis, Xilinx ISE 9.2. 

The 512-bits RSA cryptosystem using Montgomery’s 

multiplier was implemented on three different FPGA’s 

from the Xilinx family, namely Spartan 3E, Virtex 4 and 

Virtex II Pro. The results are shown in the next section. 

 

5.3. Results and its analysis 

 

To perform the time tests, we used the 16-bits 

encryption and decryption modules with the Add-and-

Shift, Booth’s and Montgomery’s modules performing the 

encryption of words with different sizes, and we measured 

the time to perform each operation. Table 1 shows the 

timing results obtained for each algorithm with a 100MHz 

clock. The major objective of this comparison is to verify 

the variation of the response time for each implementation 

caused by inputs with different sizes, since this information 

could be used for a timing attack. Table 2 shows the results 

obtained for the 512 bits implementation of the 

Montgomery module. 

By observing the results presented in the tables 1 and 2, 

we can see that the cryptography module that uses the 

Montgomery’s algorithm is the only one that shows no 

variation in the response time for any input. The other 

algorithms present a significant variation in the response 

time. This fact can be exploited for a timing attack, as  

 

 

 



Method 
Message 

length 

Encryption 

time (ns) 

Decryption 

time (ns) 

Add-and -Shift 

2 bits 1.845.105  1.931.425 

4 bits 2.256.905 4.463.565 

11 bits 1.855.625 3.402.435 

14 bits 3.179.245 3.880.775 

Booth 

2 bits 1.847.985  1.935.085 

4 bits 2.259.785  4.467.225 

11 bits 1.858.505  3.406.095 

14 bits 3.182.125  3.884.435 

Montgomery 

2 bits 33.985 43.775 

4 bits 33.985 43.775 

11 bits 33.985 43.775 

14 bits 33.985 43.775 

Table 1 - Results for the 16-bits implementations with a clock 

speed of 100MHz. 

 

Message length 
Encryption  

time (ns) 

Decryption 

Time (ns) 

2 bits 1.045.830 46.563.160 

16 bits 1.045.830 46.563.160 

32 bits 1.045.830 46.563.160 

160 bits 1.045.830 46.563.160 

210 bits 1.045.830 46.563.160 

Table 2 - Results for the 512-bits Montgomery 

implementation with a clock speed of 100MHz. 

 
FPGA / 

Device 

#Avaliable 

Slices 

# Used 

Slices 
Percentage 

Spartan 3E / 

xc3s250e 
4,896 3,680 75% 

Virtex 4 / 

xc4vfx12 
10,944 3,680 33% 

Virtex II Pro / 

xc2vp30 
27,392 3,680 13% 

Table 3 – Area results for the 512-bits RSA cryptosystem. 

 

pointed in [6]. In addition, these algorithms present very 

low speed due to the fact that the reduction step is 

performed after the multiplication. Since the results of the 

multiplications tend to be very large, the reduction step 

demands a great amount of time to be performed, 

increasing the time necessary to perform the cryptography. 

On the other hand, the module that uses the Montgomery’s 

algorithm proves to be completely immune to timing 

attacks, since the response time shows no variation for 

different inputs. Besides, the module presents very short 

response times, even for the decryption operations, which 

are naturally slow. 

The area results for the 512-bits RSA cryptosystem 

using Montgomery’s multiplier on the three different 

FPGA’s are shown in table 3. Note that, although the 

implemented module occupies a great amount of the area 

available on the Xilinx Spartan 3E, it is absolutely 

reasonably to implement it on a Virtex II Pro or even on a 

Virtex 4. 

6. CONCLUSIONS AND FURTHER WORK 

 

Based in the results shown before, we conclude that the 

RSA cryptosystem based in the Montgomery's modular 

multiplier proposed in this work has total immunity to 

timing attacks, without loss of efficiency. 

The physical implementation also shows good results, 

since the system was successfully implemented on three 

different FPGAs, reaching satisfactory area results. 

It is also important to note that the 512-bits key is not a 

limit. We can easily increase the number of bits for 1024 

or even higher bit lengths. Thus, the module presented is 

an efficient and secure solution. 

The above factors show that it is reasonably to think 

about a silicon implementation of the system, although this 

shall be done only after a detailed analysis of the power 

consumption of the system. 

In the future, we intend to improve the rate between 

area and performance. Also, we will analyze the module's 

performance for other types of side-channel attacks, as the 

fault and power attacks and perform these attacks on the 

physical implementation of the system. 
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