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ABSTRACT 

 

The visualization of switch networks is a very 

interesting tool for analysis and verification of logic cells 

generated automatically. In this context, the use of graph 

theory is very useful to attain this objective. The proposed 

algorithm satisfies this necessity to represent 

complementary series/parallel and partially “bridge” 

network logic styles, avoiding any wire crossing. A tool 

prototype is available. 

 

1. INTRODUCTION 

 

CMOS design is currently the most used and well 

established logic style applied by the modern industry of 

microelectronics. Meantime, the handcraft design as well 

as the execution of all different design flow steps and 

tasks is prone of mistakes. In this sense, it is important to 

build CAD tools that provide good assistance in the 

creation of projects of integrated circuits. 

An import help is offered by the visualization of 

transistor networks that represent CMOS logic gates. This 

problem consists in transforming switch networks in a 

pleasant visual description that contains all network 

components appropriately connected by wires (lines). 

This work presents a methodology to automatically 

generate the visual representation of logic networks from 

a textual description. In order to achieve this goal, some 

concepts from graph theory has been applied. In 

literature, we have found few publications that use graph 

theory and graph drawing. Thus, this knowledge needs to 

be adapted for application in the proposed tool. 

Next session presents a brief definition about CMOS 

logic gates. Then, the proposed algorithm to obtain the 

components position is described. Finally, the results and 

conclusions about this work are outlined. 

 

2. CMOS LOGIC GATES 

 

CMOS logic gates can be divided in two types of 

logic styles known as complementary series-parallel 

topologies (denominated here as SP) and “bridge” or non-

series-parallel networks (referred here as NSP). 

As described in [1], SP logic style is an arrangement 

of series and parallel transistors in two separated logic 

planes: PMOS pull-up and NMOS pull-down ones. An 

example of this style occurs in the NOR transistor 

network visualization, as illustrated in Fig. 1.  

 

 
 

Figure 1 – CMOS pull-down and pull-up plane of NOR 

gate. 

 

The NSP logic style, in turn, allows sometimes to 

build logic functions using less transistors than SP 

approach [2]. Fig. 2 shows a case that the SP pull-down 

plane requires 8 transistors to represent the function, 

while the same logic behavior in NSP needs only 5 

transistors. However, the NSP cannot be obtained through 

logic equations. 

 

 
 

             (a)                                         (b) 

Figure 2 – Function f=!(a*d+a*c*e+b*e+b*c*d): (a), 

bridge-based arrangement (b) SP logic style. 

 

Moreover, other logic styles as pass-transistor logic 

(called as PTL) have been exploited to guarantee some 

electrical advantages. PTL proposes to combine PMOS 

and NMOS devices in the same plane as described in [3]. 

Switch networks can be also qualified as planar 

network or non-planar one. Planar networks attend to the 

essential characteristics: There is a way to represent the 



network in a plane avoiding transistors crossing and with 

all terminals (Vdd, Gnd an output node) positioned in 

contact with the external face. It is observed in SP 

networks. A non-planar network is showed in Fig. 3. This 

situation usually occurs in NSP arrangements.  

 

 
 

                     (a)                                    (b) 

Figure 3 – No planarity conditions, (a) transistors 

crossing, (b) terminal node is surrounded. 

 

3. PROPOSED ALGORITHM 

 

The input of the method is a textual description of the 

transistor network. This description is translated into a 

multi-graph representation in order to be manipulated. 

The algorithm generates the visual representation by 

compressing the switch arrangement, through series and 

parallel device associations, in order to identify the 

network type SP or NSP. In the case of a SP network, the 

algorithm is applied directly by decompression 

(expanding) the structure. Otherwise, the NSP network is 

transformed or shared in SP networks. The flowchart in 

Fig. 4 represents these steps. 

 

 
 

Figure 4 –Algorithm flowchart. 

 

3.1 Data Structure 

 

The procedure maps a network to a multi-graph 

representation. A multi-graph G consists in a triple of 

nodes (vertexes) set V(G), an edges set and a relation for 

each edge has two vertex, that in this work need to be 

distinct. A detailed explanation about graph theory and 

multi-graphs can be found in [4] and in [1], respectively.  

Nodes labeled in network are mapped as V(G). The 

transistors (or switches) are equivalent to the edges. Also, 

a relation that links each transistor to two distinct vertexes 

exists. Moreover, the structure is extended to have the 

vertex positions in the drawing and the edges to have their 

dimensions. The only warn about this mapping is which 

the terminal nodes are kept as specific references, 

definition not covered in graph theory. Initially, the graph 

drawing techniques were studied to construct a good 

planar network representation, avoiding transistors 

crossing. But, the graph theory and algorithms do not 

work with the definition of such special nodes or 

terminals. Without these restrictions, terminals can be 

surrounded by transistors. This situation must be avoided. 

 

3.2 Compression 

 

In the first step, a compression series-parallel is 

accomplished to obtain the dimensions of each edge 

generate by compression. This data are necessary to 

discover the position of each component, as illustrated in 

decompression step. 

In the series-parallel compression discussed in [1], all 

multiple edges joining the same two vertexes (parallel 

edges) are merged into single edge. In the same way, the 

edges connecting vertexes with 2-degree (series edges) 

are merged into single edge. Notice that this merge causes 

the suppression of the 2-degree vertex. This procedure is 

only allowed if the vertex is not a special vertex. The 

relationship between compressed edges and the original 

ones are saved to be used in the decompression step. 

Recursively, it is done until no edge compressions are 

detected.  

 

3.3 Setting edges dimension 

 

Once finished the compression, it can obtain the edges 

dimensions. For definition in this work, “height” is the 

number of transistors in series and “length” is the number 

of transistors in parallel that belong to an edge. All 

original transistors have their dimensions equal to one. 

The evaluation begins by the first edges generated 

through the first parallel compression. In this case, it must 

sum the length of all compressed edges to obtain its 

length. To achieve its height, the algorithm has to find the 

highest in its compressed edges. Next, the edges 

generated by the first series compression are examined. 

The length is extracted through longest in its compressed 

edges. To obtain the height, it must sum the heights of all 

its compressed edges. It is done until all edges have its 

dimensions known. 

 

3.4 Detecting the network  

 

After the compression, the network type needs to be 

identified because the next procedure only works using 

SP network. To draw the NSP networks, a pre-processing 

is necessary. This task can be made by counting the 

number of edges. In the case that the graph presents only 



compressed edges then the network is a SP type, 

otherwise the network is a NSP one.  

 

3.5 Finding the SP networks components position  

 

Initially, the first node treated must be a terminal 

node. It is necessary because graph theory treats all nodes 

as a set without any order relation. Meanwhile, this 

characteristic allows the reuse of this procedure to obtain 

the SP arrangements. Moreover, it permits to draw only a 

plane with the same procedure. The visual generation 

consists in the following sub steps, always saving the 

transistor vertexes position. 

The network decompression is done to obtain the 

transistors positions. In series decompression case, in 

order to determine which edges recovered must be drawn 

first, it is necessary to localize decompressed edges that 

have relation with the actual node. Next, it determines the 

new actual node equal to another decompress edge vertex 

and use the edge height to obtain the next position. Then, 

the same process is done to other edges.  

In series decompression case, the edge length is used 

to define its position. For each decompressed edge to take 

advantage of its length to obtain the next position of the 

next parallel transistor.  

Other components as terminal nodes and lines can be 

easily drawn using the vertexes position. 

Fig. 5 and Fig. 6 illustrate the process to obtain the 

positions, which is done until all transistors have their 

positions. 

 

 
 

Figure 5 – Process to obtain the series decompression 

position. 

 

 
 

Figure 6 – Process to obtain the parallel 

decompression position. 

 

3.6 Pre-processing procedure to NSP networks 

 

The main objective is to transform the NSP network in 

portions composed by SP networks. Fig. 2a shows one 

example of NSP network that will be divided in SP 

networks. 

To do it, this procedure needs to identify all edges to 

interconnect the terminal nodes, known as paths in graph 

theory, and the common edges to all ways (named here as 

common edges). 

It identifies two types of way. A direct way is defined 

as the path that has the minimal edges set generate a path 

not using other edges of other direct paths, except for the 

common edges. The bridge way was those not classified 

and has least one edge not used by another direct way or 

bridge way.  

After, the procedure finds the relation between the 

types of ways. Firstly, choose a bridge way and encounter 

the most common sub way with a direct way (the largest 

compartment of continuous edges). Then, the second most 

common sub way to another direct way that doesn’t have 

the edges of last comparison needs to be encountered. In 

the bridge way, edges that were not contained by any 

direct way will be considered as bridges. 

Finally, each bridge is transformed as SP network 

having terminal nodes (only two) defined as the vertex 

contained with the direct way. The common edges are 

reorganized as SP networks having as terminal nodes its 

only two vertexes. Moreover, it divides the direct paths in 

sub paths. The direct sub path is also transformed in SP 

arrangement, considering its terminal nodes the vertexes 

to the common edges or that are network terminal nodes. 

The last step, it is compressed one more time all networks 

to eliminate eventual series or parallel edges generated to 

the network division. The result of the application of this 

procedure in Fig. 2a network is showed in Fig. 7. 

 

 
Figure 7 – Pre-processing task. 

 

3.7 Using the components position procedure for NSP 

networks 

 

This application targets SP networks generated by 

common edges or direct sub paths. Only the same 

concepts introduced, by the series-parallel 

decompression, is necessary in order to set each position 

of the NSP network. 

However, bridge arrangements need to wait until their 

terminal nodes have information about their position to be 

drawn. Moreover, bridging devices are drawn 

perpendicularly, generating a swap in their length and 

height.  

 

4. RESULTS 

 

The viewer prototype developed is able to represent 

SP networks without transistors crossing, providing clear 

illustration of series or parallel links, as showed in Fig. 8. 

Moreover, it is also possible to represent planar NSP 



networks that has the same degree (number of incidents 

edges in a vertex) in Vdd/Gnd and output nodes, and do 

not present a NSP network generated by a bridge, as 

demonstrated in Fig. 9.  

Java language has been utilized to develop this tool. 

Because, this language allows the object orientation 

method, important to offer an easy maintenance in the 

tool, and provides the portability to different operating 

systems. 

Unfortunately, this algorithm cannot be compared 

with others. Because, in all publications read, they do not 

deal with drawing switch avoided any wire crossing. This 

difficult was one of motivations to do this publication. 

 

 
 

Figure 8 – SP network, NMOS pull down plane. 

 

5. CONCLUSION 

 

The positioning algorithm that draws SP networks and 

NSP ones has been presented. This paper demonstrates a 

solution to avoid switch crossing in SP networks and a 

partial solution to avoid the same situation in planar NSP 

network. A schematic viewer prototype is ready to use. 
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Figure 9 – NSP network, NMOS pull down plane. 
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