
PERFORMANCE ANALYSIS OF THE MEDIA PROCESSING COMPONENT USING XINE-
LIB TO H.264 HIGH PROFILE VIDEO REPRODUCTION FOR THE GINGA MIDDLEWARE 

 
Tiago H. Trojahn, Julio C. B. Mattos, Luciano V. Agostini, 

Juliano L. Gonçalves, Leomar S. da Rosa Jr. 
 

Federal University of Pelotas - UFPEL 
 

ABSTRACT 
 
Nowadays, the GingaNCL and GingaJ environments of 
the Ginga Middleware for the Brazilian Digital TV 
System don’t have a way to communicate directly with 
each other. To solve that, a common core, named Ginga 
Common Core (GingaCC) is being developed in the 
Ginga Code Development Network project. The 
GingaCC will provide basic methods to both GingaNCL 
and GingaJ environments using different components, 
where each one is responsible for a specific functionality. 
One of the main components of the GingaCC is the one 
responsible to decode the video stream, named Media 
Processing. This work presents an implementation of the 
Media Processing component using the open-source Xine 
library and, also, presents a performance analysis in terms 
of processor usage and memory cost of the component 
implemented using various videos with different 
resolutions in two computer architectures.  

 
1. INTRODUCTION 

 
The middleware for the Brazilian Digital Television 
System (SBTVD), named Ginga, is an effort to create a 
middleware using both a declarative, known as Ginga 
Nested Context Language (GingaNCL) [1], and a 
procedural environment, known as Ginga-J [2]. The 
GingaNCL is based in the Nested Context Language 
(NCL), a declarative language developed by PUC-Rio 
and was recommended by International 
Telecommunication Union (ITU) for use in Internet 
Protocol Television (IPTV) systems [3]. The Ginga-J is a 
procedural environment built to support the Sun Java 
language, especially the JavaDTV package, for possible 
royalty’s problems with the JavaTV, the standard Sun’s 
package for iterative TV. 

Actually, there are two available Ginga environments 
to a developer build his applications: the GingaNCL, an 
upgrade from a low-cost declarative middleware named 
Maestro built in 2001 by Moreno [4]; and the 
OpenGinga, an upgraded version of FlexTV [5], used 
nowadays as reference for the procedural middleware. 
Unfortunately, applications developed in GingaNCL 
cannot run in OpenGinga, and vice-versa.  

A common core, named Ginga Common Core 
(GingaCC) is being developed to provide compatibility 
between GingaNCL and Ginga-J, forming a unique 
middleware for SBTVD. For this task, it was created the 
Ginga Code Development Network (GingaCDN) project, 
a network of 13 Brazilian universities, coordinated by 
Federal University of Paraiba (UFPB), where each 

university is responsible for the development of a pre-
determined number of components. The Media 
Processing is one of these components and has a main 
role in GingaCC: the video decoding, part of the essential 
function for the video exhibition, the very fundamental 
requisite expected for a television system. 

The Media Processing, and all others components 
which forms the GingaCC, will not be invoked directly 
by an application, but only for the Ginga,NCL and 
GingaJ, providing a high-level abstraction to a NCL or 
Java programmer.  

This work was divided as follows: The section 2 
presents our implementation of the Media Processing 
component implemented using the xine-lib, described in 
section 3. Section 4 describes the FlexCM, the 
component model used by all universities of the 
GingaCDN project, section 5 presents the performance 
tests of the component implemented and section 6 
presents our conclusions and possible future works. 
 

2. THE MEDIA PROCESSING COMPONENT 
 
The Media Processing is the penultimate component 
involved in the video exhibition, working directly with 
the Demux and Graphics components. The components 
involved in video exhibition are listed as follow: 

• Tuner: Component responsible for the channel 
tuning and the capture of the Transport Stream 
that is transmitted in the channel. The tuner 
output is redirected to the Information Service; 

• Information Service: Component responsible to 
analyze the Transport Stream, to obtain the 
stream information, and to add some relevant 
information to reproduction; 

• Demux: Component responsible to demux the 
streams, which compose the Transport Stream, 
using the information retrieved from Information 
Service component. The Demux output is sent to 
Media Processing; 

• Media Processing: Component responsible to 
decode the stream received from Demux 
component. The output is sent to Graphics 
component; 

• Graphics: The Graphics component is 
responsible to control and to show the decoded 
video in the display.  

The connections among the Demux, Media Processing 
and Graphics components are presented in Fig. 1. The 
arrows represent the data flux, beginning in the Tuner and 



reaching the Graphics component, passing through the 
Demux and Media Processing. 

 

 
 

Fig. 1 – The Demux, Media Processing and Graphics 
connections with the correspondent interfaces and the data flux. 

 
The Media Processing component was implemented 

using the C++ language with the open-source xine-lib 
library. To provide a standardized development and a fast 
integration process with others components, the FlexCM 
[6] component model was used. The Media Processing 
implementation follows the Java Media Framework 
(JMF) version 1.0. The JMF is a framework which 
provides architecture to synchronize and control video, 
audio and other time-based data structures, like subtitles. 

The current version of the Media Processing has the 
following functionalities: 

• Video stream decoding, including, but not 
limited to, the H.264/ Advanced Video Coding 
(AVC) formats used by SBTVD standard. 

• Basic video stream flux control (play, pause and 
stop) methods. A seek method is not supported, 
because it is not foreseen in the SBTVD 
standard. 

• Load, select and show multiple subtitle formats, 
like SubRip (SRT), and Advanced Substation 
Alpha (ASS). 

• Provide a set of video stream information, like 
total duration, actual reproduction time, 
resolution, aspect ratio and Frame Rate per 
Second (FPS). 

• Support to get screenshots and save it in a pre-
determined path, with a small preview being 
shown in the screen. 

• Support for streaming videos using Hypertext 
Transfer Protocol (HTTP), File Transfer 
Protocol (FTP), User Datagram Protocol (UDP) 
and Real-Time Transfer Protocol (RTP). 

Only video and subtitle streams are supported by the 
Media Processing implementation at this time. 
 

3. THE XINE LIBRARY 
 
The Xine library, also known as xine-lib, is a backend 
library which provides audio/video demux and decoding. 
It was developed by Xine project under GNU General 
Public License (GPL) version 2. Xine is a powerful 
library designed to be simple and architecture 
independent, leaving the front-end details to other 
modules. The main features of the xine-lib are listed 
below:  

• Native support for a large set of video and audio 
formats, like the H.264/AVC video codec and 
AAC audio codec, standards of SBTVD. 

• Portability to all Unix-like operating systems 
and also to Microsoft Windows using a wrapper 
named w32codecs.  

• Support several video drivers, like XVideo, 
XShm, OpenGL, X11, Xvideo, SDL, Frame 
Buffer and pgx64; 

• The library core has developed in C language, 
applications in other languages can use xine-lib 
through dynamic library. 

• Large number of possible optimizations using 
features like the SSE and SSE2 instruction set. 

The Media Processing described in this work uses a 
basic and optimized X11 module created for testing 
purpose. The Fig. 2 illustrates some of its methods, the 
input stream and the X11 module.  

 
 
Fig. 2 – High-level description of the Media Processing 

implemented using the xine-lib. 
 
The version of xine-lib library used in the 

implementation of the Media Processing was the 1.1.16.3 
and the X11 version used was the 1.2.2. 
 

4. THE FLEXCM COMPONENT MODEL 
 
The GingaCDN components were developed using the 
FlexCM component model. Each FlexCM component 
must specify the required interfaces and the interfaces 
provided to other components. The responsibility for 
connecting the components is done by FlexCM during the 
execution time. 

Each component implementation has to specify two 
archives:  

• Architecture: This file describes the essential 
data for execution, like the path to the dynamic 
library of each component and a unique 
identification for the component; 

• Registry: Specifies which connections are used 
by the component, using the unique 
identification numbers defined in the component 
implementation. 

This methodology helps the distributed development 
needed by GingaCDN project and also guarantees an easy 
integration process. The version used in Media 
Processing implementation was the v0.2. 



5. PERFORMANCE ANALYSIS 
 
5.1. Methodology 
 
The current version of the Media Processing component 
was evaluated in terms of processor percentage usage and 
memory cost in two personal computer architectures 
using data collected while playing a set of four videos in 
three different resolutions. The first computer, named 
“Computer A”, is equipped with an Intel Core 2 Quad 
Q6600 (2.4GHz) processor and 2GB of RAM memory, 
the second, named “Computer B”, is equipped with an 
Intel Core 2 Solo ULV SU3500 (1.4GHz) with 3GB of 
RAM memory. Both computers were running the Ubuntu 
10.04 operating system. 

The video set consist of four progressive videos 
collected across the web and encoded with the x264 
revision 1376 encoder using the default settings of the 
High Profile and AVC at level 5.1. Are used three 
different videos resolutions, the 320x480 (480p), used for 
a large amount of mobile devices, like the Apple’s 
IPhone and IPod, and two High Definition (HD) 
resolutions, the 1280x720 (720p) and 1920x1080 
(1080p). The STS116 video was obtained in [7], Taxi3 
French, named Park, was obtained in [8] and the Saguaro 
National Park, named Park, and Space Alone, named 
Space, was obtained in [9]. The detailed information for 
each resolution set is presented in Tab. 1, 2 and 3. 

 
Tab. 1 – Detailed information for the 480p video set. 

Video 
Name 

Size  
(MB) 

Duration 
 (m:ss) 

Average Video 
Bitrate (Kbps) 

Park 47.8 5:20 1250 
Space 27.9 3:06 1250 
STS116 29.9 3:31 1250 
Taxi 24.2 2:42 1250 

 
Tab. 2 – Detailed information for the 720p video set. 

Video 
Name 

Size  
(MB) 

Duration 
 (m:ss) 

Average Video 
Bitrate (Kbps) 

Park 191 5:20 5000 
Space 111 3:06 5000 
STS116 124 3:31 5000 
Taxi 96.7 2:42 5000 

 
Tab. 3 – Detailed information for the 1080p video set. 

Video 
Name 

Size  
(MB) 

Duration 
 (m:ss) 

Average Video 
Bitrate (Kbps) 

Park 382 5:20 10000 
Space 222 3:06 10000 
STS116 248 3:31 10000 
Taxi 193 2:42 10000 

 
All videos were running rate of 30 Frame per Second 

(FPS), MP4 file container and doesn’t have an audio 
track. 

Three tests were performed for each video, and the 
samples were captured every second using the Procps 
application, for a time of three minutes. The component 
evaluated was compiled using the version 4.4.1 of GNU 
GCC compiler without any optimizations available in the 
compiler. The results for Computer A and B wasn’t 

directly compared because of hardware differences, like 
available memory, hard-disk access-rate and mainboard 
capabilities.  

The performance test results for Computer A are 
presented in subsection 5.2 and for Computer B in 
subsection 5.3. 
 
5.2. Computer A performance evaluation 
 
These experiments show the efficiency in terms of 
processor usage and memory costs of the Media 
Processing in a desktop. The processor, an Intel Core 2 
Quad Q6600, consumes around 65.5W. It can be a 
reasonable consume for a set-top box since it is not a 
portable or battery-based device. However, this 
consumption can be unacceptable for most of the 
embedded systems, like cell phones and other mobile 
systems. 

The processor usage, in percentage, of the component 
Media Processing implemented using xine-lib in 
Computer A is presented in Fig. 3 and the memory cost, 
in Megabytes (MB) is presented in Fig. 4. 

 

 
Fig. 3 – Average processor usage, in percentage, when using 

Computer A to execute the video set. 
 

 
Fig. 4 – Average memory cost, in megabytes, when using 

Computer A to execute the video set. 
 

In average, the processor usage of the Media 
Processing was 48.09%. In terms of memory, the 
implementation used, in average values, 53.42MB.  
 
 
 
 
 



5.3. Computer B performance evaluation 
 
The main goal to perform experiments in Computer B 
was to evaluate the efficiency of the implemented 
component in a personal computer with a low power 
consumption processor. The Intel Core 2 Solo ULV 
SU3500 is based on a single core architecture running at 
1.4GHz, with nominal power consumption around 5.5W. 
This is a fundamental characteristic to embedded system 
and mobile devices. 

The processor usage, in percentage, of the component 
Media Processing implemented using xine-lib in 
Computer A is presented in Fig. 5 and the memory cost, 
in Megabytes (MB) is presented in Fig. 6. 

 

 
Fig. 5 – Average processor usage, in percentage, when using 

Computer B to execute the video set. 
 

 
Fig. 6 – Average memory cost, in megabytes, when using 

Computer B to execute the video set. 
 

In average, the processor usage of the Media 
Processing was 63.51%. In terms of memory, the 
implementation used, in average values, 53.01MB.  
 

6. CONCLUSIONS AND FUTURE WORKS 
 
This work presented an implementation of the Media 
Processing for GingaCC of the GingaCDN, using the 
Xine library. Experiments were performed to evaluate the 
behavior of the component in terms of processor usage 
and memory cost in two different desktop architectures. 

The tests demonstrated a Media Processing 
component with low memory cost and processor usage. 
In average, the memory cost was below 55MB in average 
and the processor usage was below 64% in both computer 
architectures. 

The Ginga middleware, being developed in a 
componentized form, will play a key role in the 
establishment of the Brazilian Digital TV. Its support for 
the environments GingaNCL and GingaJ may result in an 
emerging community specialized in the development of 
applications for both Ginga procedural and declarative 
sub-systems. 

Regarding future works, we intend to add the support 
for audio streams in both Media Processing 
implementations and some other related features like 
volume control, audio track selector and so on. We will 
perform tests with a wider number of videos in others 
resolution using some optimizations in the Xine library 
and in the Media Processing.  After all tests are 
completed and the component was fully tested, the 
integration of the Media Processing with other 
components of the GingaCDN project will be performed, 
resulting in the integrated and modular reference 
implementation of the Ginga middleware. 
 
[1] Soares, L.F.G., R. F. Rodrigues, and M. F. Moreno, “Ginga-
NCL: the declarative environment of the Brazilian digital TV 
System”. Journal of the Brazilian Computer Society, Porto 
Alegre, pp. 37-46, 2007. 
 
[2] Filho, G.L.S., L. E. C. Leite, and C. E. C. F. Batista. “Ginga-
J: The Procedural Middleware for the Brazilian Digital TV 
System”. Journal of the Brazilian Computer Society, pp.47-56, 
2007. 
 
[3] ITU, “ITU-T AAP Recommendation H.761: Nested Context 
Language (NCL) and Ginga-NCL for IPTV”, Switzerland, 
2009. 
 
[4] Moreno, M.F. A declarative middleware for Interactive 
Digital TV Systems, M.S Thesis, PUC-Rio, Rio de Janeiro, 
2006. 
 
[5] Ferreira, C.L.P., Maestro: A middleware to supports 
distributed applications based in software components. M.S 
Thesis, USP, São Paulo, 2001. 
 
[6] Filho, S. M.S., L.E.C. Leite, G. Lemos, and S. Meira, 
"FLEXCM - A Component Model for Adaptive Embedded 
Systems", 31st Annual International Computer Software and 
Applications Conference, Beijing, pp. 1-10, 2007. 
 
[7] Nasa, “NASA High Definition Video”, nasa.gov, Dec. 16, 
2009 [Online]. Available: http://www.nasa.gov/ multimedia/ 
hd/index.html, [Accessed: June 11, 2010]. 
 
[8] Microsoft, “WMV HD Content Showcase”, microsoft.com, 
2004 [Online]. Available: http://www. microsoft.com/windows/ 
windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx, 
[Accessed: June 11, 2010]. 
 
[9] Adobe, “Adobe Flash HD Gallery”, adobe.com, July 14, 
2009 [Online]. Available: http://www.adobe.com/mena/ 
products/hdvideo/hdgallery/, [Accessed: June 11, 2010] 


