
TRANSISTOR NETWORKS DESIGN USING A GRAPH-BASED APPROACH

Vinícius N. Possani, Éric F. Timm, Luciano V. Agostini, Leomar S. da Rosa Jr.
{vpossani.ifm, erict.ifm, agostini, leomarjr}@ufpel.edu.br

Grupo PET Computação UFPel

Grupo de Arquiteturas e Circuitos Integrados – GACI
Universidade Federal de Pelotas

Pelotas – Brasil

ABSTRACT

The number of transistors required for implementing a

logic function is an essential consideration in digital VLSI
design. While the generation of a series-parallel network
can be straightforward once a minimized Boolean
expression is available, this may not be an optimum
solution. This paper proposes a graph-based solution for
minimizing the number of transistors that compose a
network. The algorithm starts from a sum-of-products
expression and can achieve non-series-parallel
arrangements. Experimental results demonstrate the
efficiency of the approach when compared to the quick-
factor algorithm implemented in the SIS software.

1. INTRODUCTION

Nowadays, VLSI design has definitely established a
dominant role in the electronics industry. Automated tools
have held designers to manipulate more transistors on a
design project and shorten the design cycle. In particular,
logic synthesis tools have contributed considerably to
reduce the cycle time. In full-custom designs, manual
generation of transistor netlists for each functional block
is performed, but this is an extremely time-consuming
task. In this sense, it becomes comfortable to have
efficient algorithms to derive transistor networks
automatically.

The common technique to optimize a transistor
network is based on factorization [1-2]. In this procedure
an input Boolean expression is manipulated in order to
reduce the number of literals that compose the expression.
Subsequently, this optimized expression is translated in a
transistor network composed by a reduced number of
switches. Alternative methods are also available in the
literature. They are based on graph optimizations, were
each edge in the graph keeps an association with a
transistor in the network. The main idea is try to minimize
the edges in an existent graph [3] or to compose a new
graph with a reduced number of edges [4].

In this sense, this paper investigates a graph-based
method to generate transistor networks. In our approach,
the input Boolean expression is translated into a graph
that is later optimized through edges sharing.

The remainder of this paper is organized as follows.
Section 2 presents the proposed method to optimize
transistor networks. Section 3 describes the implemented
tool and presents the experimental results. The
conclusions are presented in Section 4.

2. GRAPH-BASED APPROACH

The proposed graph-based approach accepts a sum-of-
products (SOP) expression as input. In order to translate
the expression to a graph, a parser is needed. The basic
idea of this parser consists, initially, in separating all
products that compose the SOP. In the sequence, each
literal present in the product is extracted and stored in a
vector. For each product a vector is created. At the end,
the parser will deliver ‘n’ vectors for the ‘n’ products that
compose the input Boolean expression. Figure 1
illustrates all vectors obtained from the Expression 1 that
represents an input SOP.

!A*C*E*F*!G*H + !A*B*F*!H + A*!B*C*!G*H (Exp.1)

!A C E F !G H
!A B F !H
A !B C !G H

Fig. 1 – Vectors representing the products from Expression 1.

Once the list of vectors is obtained, they are organized

according to the number of literals that compose them.
Figure 2 exemplifies this situation.

Afterward, it is started the assembly of the graph by
removing a vector at a time from this list and creating an
edge in the graph for each literal found in the vector.
Notice that this operation will create a set of edges
connected in series. This is demonstrated in Figure 3,
where it is also possible to see the vertices that make
connections between the pairs of edges.

!A C E F !G H
A !B C !G H
!A B F !H

Fig. 2 – Ordered and organized vectors representing the
products from Expression 1.

Fig. 3 – First product as a graph.

In the sequence, another vector is loaded from the list

of vectors and placed in the graph. Figure 4 illustrates that
for the second vector in the list. All paths in the graph are
traversed in order to recognize identical vertices (vertices
that represent same literals). If this condition is verified in
the graph, then the identical edges are carried to the
beginning of the graph and they are shared. This
operation leads to a decrease of edges count. This is
exemplified in Figure 5, where the edges ‘C’, ‘!G’ and
‘H’ are merged.

Fig. 4 – Graph composed by the two first products.

Fig. 5 – Optimized graph for the two first products.

This procedure is performed until the list of vectors is
completely empty.

 Figure 6 shows the last vector added to the graph.
Although there are edges candidates to be merged, ‘!A’
and ‘F’, in this case it is not possible to perform the
optimization. It is duo to the fact that vertex ‘3’ is a
separation point between the two paths.

Fig. 6 – Graph with the last product added.

After finishing the optimization process, it is started

again, but now the graph is traversed from the end to the
beginning in order to optimize the literals that could not
be moved and merged before. For this, the vertices ‘0’

and ‘out’ are changed of place, as if the graph has been
turned 180 degrees.

Now, the literal ‘!A’ and ‘F’ can be brought to the
beginning of the graph in order to be merged, each one
with its equivalent literal. Figure 7 illustrates this
procedure.

Fig. 7 – The graph has been turned 180 degrees.

Fig. 8 – Obtained graph after the final optimization.

To guarantee that sneak-paths (forbidden paths) are
not introduced in the graph, a routine that traverses the
graph and compares it to the original products of the
expression is regularly invoked. This is necessary because
if a sneak-path is introduced, the graph will not be a true
representation of the input Boolean expression.

Notice that all original products of the SOP are
present in the graph through the paths ‘!A F B !H’, ‘!A F
E C !G H’ and ‘A !B C !G H’. However, by sharing edges
a new path ‘A !B E B !H’ was also introduced. This path
is allowed since it not modifies the logical behavior.
When thinking in a transistor network, this new path
cannot be sensitized because it contains transistors
controlled by variable ‘B’ in both polarities. In order
words, this is not a valid path.

The validation routine uses Latin arrays to generate all
the existing paths in the graph. These paths are compared
to a list that contains all paths of the graph before the
optimization process. If a new path is inserted, then it is
verified if it contains the direct literal and the
complemented one. If the new path does not have them, it
means that it is an invalid path. In that case this
optimization is refused and the method continues to run.

An interesting detail is that the proposed approach
may derive bridge networks like methods proposed by [3]
and [4]. The example illustrated in Figure 8 presents a
bridge configuration (through edge ‘E’). It is a benefit
over optimization approaches based on factorization that
can only derive series-parallel networks. For several
Boolean functions the series-parallel arrangement is not
the most optimized solution [5].

Tab. 1 – Results for 10 randomly choose Boolean functions with 7 input variables.
Function # literals SOP form # literals SIS # edges Soptimizer % of gain

F1 133 80 59 26,25
F2 92 70 44 37.44
F3 78 62 39 37.10
F4 150 78 70 10.26
F5 119 82 55 32.93
F6 71 44 38 13,64
F7 170 76 82 -7,89
F8 135 78 62 20.51
F9 111 74 59 18.75
F10 97 64 52 18,75

3. EXPERIMENTAL RESULTS

The proposed method has been implemented in Java
language using the NetBeans IDE 6.5.1. A tool containing
the core algorithms and the graphics interface was
developed. The graphics interface uses the Prefuse library
[6]. Figure 9 illustrates it for the example from
Expression 1. Also, the tool presents a Spice netlist output
module that is capable to print Spice files to be used in
electrical simulators.

Fig. 9 – Graphical interface of the developed tool.

In order to evaluate the proposed approach, 10
Boolean functions with 7 input variables were randomly
chosen. They were introduced in SIS software [7] and
extracted in their SOP form. Table 1 presents the obtained
results. The total numbers of literals for the SOP form are
described in column “# literals SOP form”.

The expressions were factorized using the quick-
factor algorithm from SIS. The results are shown in
column “# literals SIS”. Results obtained using the
proposed approach are shown in column “# edges
Soptimizer”. The obtained gain over the SIS software are
shown in column “% of gain”.

In most cases the proposed approach achieved smaller
results. Analyzing the obtained networks we identified
several bridge configurations in the arrangements
delivered by the tool. On the other hand, SIS software
delivers optimized expressions composed by ‘AND’ and
‘OR’ operators. In this case only series-parallel networks
can be implemented, representing an overhead in terms of
area (transistor count).

For function F7, the proposed algorithm was not able
to deliver a smaller solution. The point in that case is the
ability of the proposed algorithm to achieve bridge
configuration. For this input expression the algorithm

could not find bridges. We believe that it is related to the
SOP ordering that is used to compose and to optimize the
graph. As mentioned before, we start using products with
a larger number of literals. However, when the products
that compose the SOP present almost same number of
literals, we choose them randomly. This situation could
be leading for this kind of result.

4. CONCLUSION AND FUTURE WORKS

This paper presented a graph-based approach to
generate optimized transistor networks. The proposed
solution is able to deliver bridge networks. The algorithm
was implemented in Java language and a graph interface
using Prefuse library is available. 10 Boolean expressions
with 7 input variables were randomly chosen to be used
as benchmark. The results demonstrated that the proposed
approach can delivery networks with a transistor
reduction up to 37.44% if compared to the quick-factor
algorithm from the SIS software.

As future works we intend to investigate the impact of
selecting different products ordering to start the
optimization process. Also, we intend to compare the
proposed solution with the method described in [4].

5. REFERENCES

[1] Brayton, R. K. Factoring logic functions. IBM J. Res.

Dev. 31, 2 (1987), 187-198.

[2] Mintz, A. and Golumbic, M. C. Factoring boolean
functions using graph partitioning. Discrete Appl.
Math. 149, 1-3 (2005), 131-153.

[3] J. Zhu et al. On the Optimization of MOS Circuits.
IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 412-
422.

[4] D. Kagaris et al. A Methodology for Transistor-
Efficient Supergate Design. IEEE Transactions On
Very Large Scale Integration (VLSI) Systems.
(2007), 488-492.

[5] Da Rosa Jr, L. S. Automatic Generation and
Evaluation of Transistor Networks in Different Logic
Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre,
Brazil. (2008), 147 p.

[6] Prefuse.org. The Prefuse Visualization Toolkit.
[Online] Avaliable: http://prefuse.org/ [Acessed:
Mar. 25, 2010].

[7] Sentovich, E.; Singh, K., Lavagno; L., Moon; C.,
Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.;
Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A
system for sequential circuit synthesis. Tech. Rep.
UCB/ERL M92/41. UC Berkeley, Berkeley. (1992).

