TRANSISTOR NETWORKSDESIGN USING A GRAPH-BASED APPROACH

Vinicius N. Possani, Eric F. Timm, Luciano V. Agdsi, Leomar S. da Rosa Jr.
{vpossani.ifm, erict.ifm, agostini, leomarjr}@ufpel.edu.br

Grupo PET Computacao UFPel
Grupo de Arquiteturas e Circuitos Integrados — GACI
Universidade Federal de Pelotas
Pelotas — Brasil

ABSTRACT

The number of transistors required for implementing
logic function is an essential consideration intdigvLSI
design. While the generation of a series-parakivork
can be straightforward once a minimized Boolean

In this sense, this paper investigates a graphdbase
method to generate transistor networks. In our agg,
the input Boolean expression is translated intoraply
that is later optimized through edges sharing.

The remainder of this paper is organized as follows
Section 2 presents the proposed method to optimize

expression is available, this may not be an optimumtransistor networks. Section 3 describes the imptaad

solution. This paper proposes a graph-based solfio

tool and presents the experimental results. The

minimizing the number of transistors that compose aconclusions are presented in Section 4.

network. The algorithm starts from a sum-of-product
expression and can achieve
arrangements. Experimental results demonstrate
efficiency of the approach when compared to thelqui
factor algorithm implemented in the SIS software.

1. INTRODUCTION

non-series-parallel
the

2. GRAPH-BASED APPROACH

The proposed graph-based approach accepts a sum-of-
products (SOP) expression as input. In order tostage
the expression to a graph, a parser is neededbasie
idea of this parser consists, initially, in sepgtall
products that compose the SOP. In the sequench, eac

Nowadays, VLSI design has definitely established a literal present in the product is extracted andestan a

dominant role in the electronics industry. Autondatieols
have held designers to manipulate more transistora
design project and shorten the design cycle. Itiquaar,
logic synthesis tools have contributed consideratbly
reduce the cycle time. In full-custom designs, nanu
generation of transistor netlists for each funaioolock
is performed, but this is an extremely time-consgni

vector. For each product a vector is created. Atehd,
the parser will deliverr’ vectors for theri’ products that
compose the input Boolean expression. Figure 1
illustrates all vectors obtained from the Expressiothat
represents an input SOP.

IA*C*E*F*IG*H + |IA*B*F*IH + A*IB*C*IG*H (Exp.1)

task. In this sense, it becomes comfortable to have

efficient algorithms to derive transistor networks
automatically.

The common technique to optimize a transistor
network is based on factorization [1-2]. In thi:gedure
an input Boolean expression is manipulated in otder
reduce the number of literals that compose theessgon.

Subsequently, this optimized expression is traedlat a

A | C E F|l 1G] H]
A | B | F [H
A|lB|C|]IIG]|] H]

Fig. 1 — Vectors representing the products fromrEsgion 1.

Once the list of vectors is obtained, they are il
according to the number of literals that composanth

transistor network composed by a reduced number ofFigure 2 exemplifies this situation.

switches. Alternative methods are also availableghe
literature. They are based on graph optimizatiovese

Afterward, it is started the assembly of the gréph
removing a vector at a time from this list and trepan

each edge in the graph keeps an association with a@dge in the graph for each literal found in theteec

transistor in the network. The main idea is tryrimimize
the edges in an existent graph [3] or to composeva
graph with a reduced number of edges [4].

Notice that this operation will create a set of exlg
connected in series. This is demonstrated in Figyre
where it is also possible to see the vertices thake
connections between the pairs of edges.

and ‘out’ are changed of place, as if the graphbeen

A | C E Fl 1G] H] turned 180 degrees.
A 'B Cc IG H Now, the literal ‘!/A’ and ‘F’ can be brought to the
IA B F H beginning of the graph in order to be merged, ez
Fig. 2 — Ordered and organized vectors represettiing with its equivalent literal. Figure 7 illustratedhig
products from Expression 1. procedure.

@!A @C @E @F 34 16 . H .

Fig. 3 — First product as a graph.

In the sequence, another vector is loaded fronlishe
of vectors and placed in the graph. Figure 4 iaists that
for the second vector in the list. All paths in tr@ph are
traversed in order to recognize identical vertigestices
that represent same literals). If this conditiomdsified in
the graph, then the identical edges are carriedhéo
beginning of the graph and they are shared. This
operation leads to a decrease of edges count. i$his
exemplified in Figure 5, where the edges ‘C’, ‘l&hd
‘H’ are merged.

Fig. 8 — Obtained graph after the final optimizatio

To guarantee that sneak-paths (forbidden paths) are
not introduced in the graph, a routine that traeerthe
graph and compares it to the original products haf t

'8 ¢ 16 expression is regularly invoked. This is necessagause
Fig. 4 — Graph composed by the two first products. if a sneak-path is introduced, the graph will netebtrue
representation of the input Boolean expression.

Notice that all original products of the SOP are
present in the graph through the paths ‘A F B W\ F
E C!IG H and ‘A 'B C !G H'. However, by sharing gés
a new path ‘A !B E B 'H’ was also introduced. Tlpiath
is allowed since it not modifies the logical belmavi
When thinking in a transistor network, this new hpat
cannot be sensitized because it contains transistor
controlled by variable ‘B’ in both polarities. Inraer

words, this is not a valid path.
Figure 6 shows the last vector added to the graph.

Although there are edges candidates to be mer¢ad, * Thg v_alidation r_outine uses Latin arrays to germeadit
and ‘F, in this case it is not possible to perfote N€ existing paths in the graph. These paths arpaced

optimization. It is duo to the fact that vertex ‘B a t© @ list that contains all paths of the graph befthe

separation point between the two paths optimization process. If a new path is inserteéntit is
verified if it contains the direct literal and the

complemented one. If the new path does not havs,the
means that it is an invalid path. In that case this
optimization is refused and the method continuesito

Fig. 5 — Optimized graph for the two first products

This procedure is performed until the list of vests
completely empty.

An interesting detail is that the proposed approach
may derive bridge networks like methods propose{Bby
and [4]. The example illustrated in Figure 8 présem
bridge configuration (through edge ‘E’). It is ankdit
over optimization approaches based on factorizatian
can only derive series-parallel networks. For saver

After finishing the optimization process, it iss&@ pgqgjean functions the series-parallel arrangememiot
again, but now the graph is traversed from theteritie the most optimized solution [5].

beginning in order to optimize the literals thaukbnot
be moved and merged before. For this, the verti@es

Fig. 6 — Graph with the last product added.

Tab. 1 — Results for 10 randomly choose Booleantions with 7 input variables.

Function #literalsSOPform | #literalsSIS # edges Soptimizer % of gain
F1 133 80 59 26,25
F2 92 70 44 37.44
F3 78 62 39 37.10
F4 150 78 70 10.26
F5 119 82 55 32.93
F6 71 44 38 13,64
F7 170 76 82 -7,89
F8 135 78 62 20.51
F9 111 74 59 18.75
F10 97 64 52 18,75

3. EXPERIMENTAL RESULTS could not find bridges. We believe that it is rethto the

SOP ordering that is used to compose and to opithie

The proposed method has been implemented in Javgraph. As mentioned before, we start using prodwits
language using the NetBeans IDE 6.5.1. A tool dointg a larger number of literals. However, when the poisl
the core algorithms and the graphics interface wasthat compose the SOP present almost same number of
developed. The graphics interface uses the Préhraey literals, we choose them randomly. This situationld
[6]. Figure 9 illustrates it for the example from be leading for this kind of result.
Expression 1. Also, the tool presents a Spicestetlitput
module that is capable to print Spice files to keduin
electrical simulators. 4. CONCLUSION AND FUTURE WORKS

=

o
g
3
2
EN
=
5

This paper presented a graph-based approach to
generate optimized transistor networks. The prapose
solution is able to deliver bridge networks. Thgoaithm
was implemented in Java language and a graph acterf
using Prefuse library is available. 10 Boolean espions
with 7 input variables were randomly chosen to bedu
as benchmark. The results demonstrated that thppged
approach can delivery networks with a transistor

In order to evaluate the proposed approach, 10reduqtion up to 37.44% if compared to the quickdac
Boolean functions with 7 input variables were ranjo ~ @lgorithm from the SIS software. _ ,
chosen. They were introduced in SIS software [@] an AS future works we intend to investigate the impaict
extracted in their SOP form. Table 1 presents tiaiped ~ Selécting different products ordering to start the

results. The total numbers of literals for the SO are OPtimization process. Also, we intend to compare th
described in column “# literals SOP form”. proposed solution with the method described in [4].

Fig. 9 — Graphical interface of the developed tool.

The expressions were factorized using the quick-
factor algorithm from SIS. The results are shown in 5. REFERENCES
column “# literals SIS”. Results obtained using the
proposed approach are shown in column *# edges[1] Brayton, R. K. Factoring logic functions. IBM J. Re
Soptimizer”. The obtained gain over the SIS sofenare Dev. 31, 2 (1987), 187-198.

H “0 H ”
shown in column “36 of gain”. [2] Mintz, A. and Golumbic, M. C. Factoring boolean

In most cases the proposed approach achieved smalle functions using graph partitioning. Discrete Appl.

results. Analyzing the obtained networks we idéesdif Math. 149, 1-3 (2005), 131-153.

several bridge configurations in the arrangements(3] j. zhu et al. On the Optimization of MOS Circuits.
delivered by the tool. On the other hand, SIS sarféw IEEE Transactions on Circuits and Systems:
delivers optimized expressions composed by ‘ANDd an Fundamental Theory and Applications. (1993), 412-
‘OR’ operators. In this case only series-paralketiworks 422,

can be implemented, representing an overheadrirstef
area (transistor count).

For function F7, the proposed algorithm was notabl
to deliver a smaller solution. The point in thaseas the
ability of the proposed algorithm to achieve bridge
configuration. For this input expression the altion

[4] D. Kagaris et al. A Methodology for Transistor-
Efficient Supergate Design. IEEE Transactions On
Very Large Scale Integration (VLSI) Systems.
(2007), 488-492.

[5] Da Rosa Jr, L. S.

Automatic Generation and [7] Sentovich, E.; Singh, K., Lavagno; L., Moon; C.,

Evaluation of Transistor Networks in Different Logi

Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre,

Brazil. (2008), 147 p.

[6] Prefuse.org. The Prefuse Visualization Toolkit.

[Online] Avaliable:
Mar. 25, 2010].

http://prefuse.org/ [Acessed:

Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.;
Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A

system for sequential circuit synthesis. Tech. Rep.
UCB/ERL M92/41. UC Berkeley, Berkeley. (1992).

