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ABSTRACT 

 
The number of transistors required for implementing a 

logic function is an essential consideration in digital VLSI 
design. While the generation of a series-parallel network 
can be straightforward once a minimized Boolean 
expression is available, this may not be an optimum 
solution. This paper proposes a graph-based solution for 
minimizing the number of transistors that compose a 
network. The algorithm starts from a sum-of-products 
expression and can achieve non-series-parallel 
arrangements. Experimental results demonstrate the 
efficiency of the approach when compared to the quick-
factor algorithm implemented in the SIS software.  

 
 

1. INTRODUCTION 
 

Nowadays, VLSI design has definitely established a 
dominant role in the electronics industry. Automated tools 
have held designers to manipulate more transistors on a 
design project and shorten the design cycle. In particular, 
logic synthesis tools have contributed considerably to 
reduce the cycle time. In full-custom designs, manual 
generation of transistor netlists for each functional block 
is performed, but this is an extremely time-consuming 
task. In this sense, it becomes comfortable to have 
efficient algorithms to derive transistor networks 
automatically.  

The common technique to optimize a transistor 
network is based on factorization [1-2]. In this procedure 
an input Boolean expression is manipulated in order to 
reduce the number of literals that compose the expression. 
Subsequently, this optimized expression is translated in a 
transistor network composed by a reduced number of 
switches. Alternative methods are also available in the 
literature. They are based on graph optimizations, were 
each edge in the graph keeps an association with a 
transistor in the network. The main idea is try to minimize 
the edges in an existent graph [3] or to compose a new 
graph with a reduced number of edges [4]. 

 
 
 
 

In this sense, this paper investigates a graph-based 
method to generate transistor networks. In our approach, 
the input Boolean expression is translated into a graph 
that is later optimized through edges sharing. 

The remainder of this paper is organized as follows. 
Section 2 presents the proposed method to optimize 
transistor networks. Section 3 describes the implemented 
tool and presents the experimental results. The 
conclusions are presented in Section 4. 

  
 

2. GRAPH-BASED APPROACH 
 

The proposed graph-based approach accepts a sum-of-
products (SOP) expression as input. In order to translate 
the expression to a graph, a parser is needed. The basic 
idea of this parser consists, initially, in separating all 
products that compose the SOP. In the sequence, each 
literal present in the product is extracted and stored in a 
vector. For each product a vector is created. At the end, 
the parser will deliver ‘n’ vectors for the ‘n’ products that 
compose the input Boolean expression. Figure 1 
illustrates all vectors obtained from the Expression 1 that 
represents an input SOP. 

 
!A*C*E*F*!G*H + !A*B*F*!H + A*!B*C*!G*H   (Exp.1) 
 

!A C E F !G H 
!A B F !H   
A !B C !G H  

Fig. 1 – Vectors representing the products from Expression 1. 
 
Once the list of vectors is obtained, they are organized 

according to the number of literals that compose them. 
Figure 2 exemplifies this situation.  

Afterward, it is started the assembly of the graph by 
removing a vector at a time from this list and creating an 
edge in the graph for each literal found in the vector. 
Notice that this operation will create a set of edges 
connected in series. This is demonstrated in Figure 3, 
where it is also possible to see the vertices that make 
connections between the pairs of edges. 

 
 
 



 
!A C E F !G H 
A !B C !G H  
!A B F !H   

Fig. 2 – Ordered and organized vectors representing the 
products from Expression 1. 

 

 
Fig. 3 – First product as a graph. 

 
In the sequence, another vector is loaded from the list 

of vectors and placed in the graph. Figure 4 illustrates that 
for the second vector in the list. All paths in the graph are 
traversed in order to recognize identical vertices (vertices 
that represent same literals). If this condition is verified in 
the graph, then the identical edges are carried to the 
beginning of the graph and they are shared. This 
operation leads to a decrease of edges count. This is 
exemplified in Figure 5, where the edges ‘C’, ‘!G’ and 
‘H’ are merged.  
 

 
Fig. 4 – Graph composed by the two first products. 

 

 

Fig. 5 – Optimized graph for the two first products. 

 

This procedure is performed until the list of vectors is 
completely empty. 

 Figure 6 shows the last vector added to the graph. 
Although there are edges candidates to be merged, ‘!A’ 
and ‘F’, in this case it is not possible to perform the 
optimization. It is duo to the fact that vertex ‘3’ is a 
separation point between the two paths. 
 

 

Fig. 6 – Graph with the last product added. 

 
After finishing the optimization process, it is started 

again, but now the graph is traversed from the end to the 
beginning in order to optimize the literals that could not 
be moved and merged before. For this, the vertices ‘0’ 

and ‘out’ are changed of place, as if the graph has been 
turned 180 degrees.  

Now, the literal ‘!A’ and ‘F’ can be brought to the 
beginning of the graph in order to be merged, each one 
with its equivalent literal. Figure 7 illustrates this 
procedure. 

 
Fig. 7 – The graph has been turned 180 degrees. 

 

 
Fig. 8 – Obtained graph after the final optimization. 

 

To guarantee that sneak-paths (forbidden paths) are 
not introduced in the graph, a routine that traverses the 
graph and compares it to the original products of the 
expression is regularly invoked. This is necessary because 
if a sneak-path is introduced, the graph will not be a true 
representation of the input Boolean expression.  

Notice that all original products of the SOP are 
present in the graph through the paths ‘!A F B !H’, ‘!A F 
E C !G H’ and ‘A !B C !G H’. However, by sharing edges 
a new path ‘A !B E B !H’ was also introduced. This path 
is allowed since it not modifies the logical behavior. 
When thinking in a transistor network, this new path 
cannot be sensitized because it contains transistors 
controlled by variable ‘B’ in both polarities. In order 
words, this is not a valid path. 

The validation routine uses Latin arrays to generate all 
the existing paths in the graph. These paths are compared 
to a list that contains all paths of the graph before the 
optimization process. If a new path is inserted, then it is 
verified if it contains the direct literal and the  
complemented one. If the new path does not have them, it 
means that it is an invalid path. In that case this 
optimization is refused and the method continues to run. 

An interesting detail is that the proposed approach 
may derive bridge networks like methods proposed by [3] 
and [4]. The example illustrated in Figure 8 presents a 
bridge configuration (through edge ‘E’). It is a benefit 
over optimization approaches based on factorization that 
can only derive series-parallel networks. For several 
Boolean functions the series-parallel arrangement is not 
the most optimized solution [5]. 
 

 
 



Tab. 1 – Results for 10 randomly choose Boolean functions with 7 input variables. 
Function # literals SOP form # literals SIS # edges Soptimizer % of gain 

F1 133 80 59 26,25 
F2 92 70 44 37.44 
F3 78 62 39 37.10 
F4 150 78 70 10.26 
F5 119 82 55 32.93 
F6 71 44 38 13,64 
F7 170 76 82 -7,89 
F8 135 78 62 20.51 
F9 111 74 59 18.75 
F10 97 64 52 18,75 

 
 

3. EXPERIMENTAL RESULTS 
 

The proposed method has been implemented in Java 
language using the NetBeans IDE 6.5.1. A tool containing 
the core algorithms and the graphics interface was 
developed. The graphics interface uses the Prefuse library 
[6]. Figure 9 illustrates it for the example from 
Expression 1. Also, the tool presents a Spice netlist output 
module that is capable to print Spice files to be used in 
electrical simulators. 

 

Fig. 9 – Graphical interface of the developed tool. 

 

In order to evaluate the proposed approach, 10 
Boolean functions with 7 input variables were randomly 
chosen. They were introduced in SIS software [7] and 
extracted in their SOP form. Table 1 presents the obtained 
results. The total numbers of literals for the SOP form are 
described in column “# literals SOP form”.  

The expressions were factorized using the quick-
factor algorithm from SIS. The results are shown in 
column “# literals SIS”. Results obtained using the 
proposed approach are shown in column “# edges 
Soptimizer”. The obtained gain over the SIS software are 
shown in column “% of gain”. 

In most cases the proposed approach achieved smaller 
results. Analyzing the obtained networks we identified 
several bridge configurations in the arrangements 
delivered by the tool. On the other hand, SIS software 
delivers optimized expressions composed by ‘AND’ and 
‘OR’ operators. In this case only series-parallel networks 
can be implemented, representing an overhead in terms of 
area (transistor count).  

For function F7, the proposed algorithm was not able 
to deliver a smaller solution. The point in that case is the 
ability of the proposed algorithm to achieve bridge 
configuration. For this input expression the algorithm 

could not find bridges. We believe that it is related to the 
SOP ordering that is used to compose and to optimize the 
graph. As mentioned before, we start using products with 
a larger number of literals. However, when the products 
that compose the SOP present almost same number of 
literals, we choose them randomly. This situation could 
be leading for this kind of result. 
  
  

4. CONCLUSION AND FUTURE WORKS 
 

This paper presented a graph-based approach to 
generate optimized transistor networks. The proposed 
solution is able to deliver bridge networks. The algorithm 
was implemented in Java language and a graph interface 
using Prefuse library is available. 10 Boolean expressions 
with 7 input variables were randomly chosen to be used 
as benchmark. The results demonstrated that the proposed 
approach can delivery networks with a transistor 
reduction up to 37.44% if compared to the quick-factor 
algorithm from the SIS software. 

As future works we intend to investigate the impact of 
selecting different products ordering to start the 
optimization process. Also, we intend to compare the 
proposed solution with the method described in [4].  

 
 

5. REFERENCES 
 
[1] Brayton, R. K. Factoring logic functions. IBM J. Res. 

Dev. 31, 2 (1987), 187-198. 

[2] Mintz, A. and Golumbic, M. C. Factoring boolean 
functions using graph partitioning. Discrete Appl. 
Math. 149, 1-3 (2005), 131-153. 

[3] J. Zhu et al. On the Optimization of MOS Circuits. 
IEEE Transactions on Circuits and Systems: 
Fundamental Theory and Applications. (1993),  412-
422.  

[4] D. Kagaris et al. A Methodology for Transistor-
Efficient Supergate Design. IEEE Transactions On 
Very Large Scale Integration (VLSI) Systems. 
(2007), 488-492. 



[5] Da Rosa Jr, L. S.  Automatic Generation and 
Evaluation of Transistor Networks in Different Logic 
Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre, 
Brazil. (2008), 147 p. 

[6] Prefuse.org. The Prefuse Visualization Toolkit. 
[Online] Avaliable: http://prefuse.org/ [Acessed: 
Mar. 25, 2010]. 

[7] Sentovich, E.; Singh, K., Lavagno; L., Moon; C., 
Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.; 
Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A 
system for sequential circuit synthesis. Tech. Rep. 
UCB/ERL M92/41. UC Berkeley, Berkeley. (1992). 

 


