
FUNCTIONAL COMPOSITION APPLIED TO AIG CONSTRUCTIVE OPTIMIZATION

Thiago Figueiró, Renato Ribas and André Reis

{trfigueiro, rpribas, andreis}@inf.ufrgs.br

Instituto de Informática, Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500, Bloco IV, Porto Alegre, RS, Brazil

ABSTRACT

This work presents a logic synthesis algorithm that works

on top of an And-Inverter-Graph (AIG) data structure and

the final goal is to minimize the number of nodes in the

AIG. This paper introduces a novel approach for AIG

construction based on a new synthesis paradigm called

functional composition. The idea is to perform the synthesis

by associating simpler AIGs, in a bottom-up approach.

Results indicate that this approach present a gain of 5%

when compared to first optimize an equation and then build

the AIG.

1. INTRODUCTION

Algorithmic logic synthesis is usually performed in two

steps, one performed over Boolean equations (regardless

any physical property) and another where the resulting logic

is mapped into a physical cell library or other physical

implementation. The first step is composed of several logic

operations such as Decomposition Extraction, Factoring,

Substitution and Elimination [1]. These operations may be

either explicitly performed (SIS [2]) or implicitly

performed by other methods such as And-Inverter Graph

(AIG) rewriting (ABC [3]).

The main goal of technology independent synthesis is to

compute a representation of a given combinational circuit

with optimized costs measured independently of the target

technology. These costs may be related to literals (e.g.

number of literals and logic depth) or AIG nodes (e.g.

number of nodes and graph depth measured in nodes). In

SIS [2], the technology independent cost was based on

literals. In more recent tools like ABC [3], the technology

independent cost is based on AIG nodes. The use of AIG

nodes is justified as it is expected to produce a better

correlation with final area and delay once the circuit has

been mapped to a target technology [4]. This advantage

with respect to literals comes from (1) the fact that AIGs

are multi-level representations allowing sharing of nodes;

and (2) the AIG node is a simple structure, which keeps

correlation with area as all nodes have homogeneous simple

granularity. AIGs are graphs whose nodes are limited to

two-input ANDs while inverters are indicated by a special

attribute on the edges of the network. Sum of products [5]

and factored forms [6] were used in SIS [2] to represent

logic function of single output circuit nodes. However, the

granularity of the logic functions could vary, leading to

optimizations in the number of literals that would not

translate in better circuit characteristics after mapping [4,

7]. These issues have been discussed in the IWLS

benchmarking effort [7]. For this reason, most modern logic

synthesis tools work on top of AIG representations [4, 8-9],

including tools for FPGA synthesis that use the concepts of

K-cuts [10-11], factor cuts [12] and KL-cuts [13] on AIGs.

However, a recent work by Joswiak [14] has shown that for

small circuits there is still room for area gains with respect

to AIG based tools. In this sense there is a need for an

aggressively Boolean algorithm for AIG rewriting. One

example of such an algorithm devoted to factoring is

presented in [15]. An additional advantage of that algorithm

[15] is that it operates by functional composition of smaller

known sub-functions, which allows the method to optimize

cost functions that take more than just literals into account.

Notice that the factoring algorithms presented in [6, 15] do

not include sub-expression reuse, which makes multi level

representations like TANT networks [16] competitive

compared to two-level expressions [5]. The contribution of

this paper is to adapt the algorithm in [15] to operate in

multilevel expressions considering shared sub-expressions.

This paper presents a novel approach for AIG construction,

based on this new synthesis paradigm called functional

composition [15]. The approach proposed herein consists in

constructing AIGs from association of simpler AIGs, in a

bottom-up approach.

This paper is organized as follows. Section 2 presents basic

concepts regarding technology independent synthesis

algorithms and AIGs. Section 3 presents the proposed

algorithm for AIG construction. Section 4 presents and

discusses the results, compared with previous works and

SIS/ABC available approach and the final section discusses

the conclusions of this paper.

2. BASIC CONCEPTS

A Boolean function describes how to determine a Boolean value

output based on some logical calculation performed over Boolean

inputs. A function f is said to be a subfunction of g whenever exist

another function h and an operation OP for which g = f op h. An

equation is one representation of a function, which may also

be described as a Binary Decision Diagram (BDD) or as a

A B C

A B C A B A C A C B C

Truth Table (TT), for instance. Every representation of a

function may be classified as canonical or non-canonical. A

representation is said to be canonical if every function will

always be described exactly in the same way. Examples of

canonical representations are BDDs and TTs (as long as the

variables ordering are the same). Equations are non-

canonical representations of a function; therefore, the same

function may be described by different equations. For

instance, equations (1), (2) and (3) represent exactly the

same function. An equation is composed of literals. A literal

is an instance of a variable (positive literal, for instance

“A”) or its complement (negative literal, for instance “!A”.
F=A*B+C (1)

F=A*B+A*C (2)

F=(A+C)*(B+C) (3)

AND-INV graphs (AIGs) are another way to represent

Boolean functions. An AIG is a graph composed

exclusively of two inputs AND gates and inverters. It is

frequent the representation of the inverters as a special flag

on the graph’s edge and therefore all nodes on the graph

represent two input ANDs. Figure 1 present one AIG for

the equation F=A*!B*C. AIGs are a not canonical,

therefore, different AIGs may represent the same Boolean

function. Figure 2 present three different AIGs for the same

function (they implement the equations presented

previously).

Figure 1. Sample of AIG for the equation F=A*!B*C

3. PROPOSED ALGORITHM

The proposed algorithm is performed in three steps:

Building the Allowed Subfunctions, Creating Single

Variable Functions and Combining and Evaluating

Subfunctions. First, the set of allowed subfunctions is built

to reduce the number of subfunctions to evaluate. Then, all

possible subfunctions of one variable are created,

considering them as the seeds to the associations that follow

it. Finally, the initial (one variable) subfunctions are

combined and evaluated until the target function is

generated.

(a) (b) (c)

Figure 2. AIG representing the same function but described

as (a) F= A*B+C, (b) F= A*B+A*C and (c) F=(A+C)*(B+C).

3.1. Building the Allowed Functions

In order to reduce the search space of subfunctions and,

therefore, improve the performance and space required by

the algorithm, a set of allowed subfunctions is determined.

This set is composed by all positive and negative cofactors

of the target function, and its "sub-cofactors", built

recursively. Moreover, AND and OR operations are

performed on all subfunctions generated, two by two. Also,

the target function is also included as an allowed

subfunction.

For example, consider the target function to be Q =

A*B+C. Since it contains three literals, it will be

represented by 8 bits. Therefore, the target function is

(01010111). The allowed subfunctions will be the target

function, plus the cofactors of this function in all variables

"A", "B" and "C", its subcofactors and the results of AND

and OR operations on the cofactors and subcofactors.

First, consider the cofactors in "A" of the target function,

which are the negative (01010101) and the positive

(01110111). The negative cofactor in "A" is already a

variable, and no further evaluation will be performed (it is

C). The positive cofactor in "A" will be evaluated as

subcofactor in "B" and in "C". In "B" they are negative

(01010101) and positive (11111111) while in "C" they are

negative (00110011) and positive (11111111). Both

positive subcofactors are constant "1" and no longer are

evaluated. Both negative cofactors are variables and are

also no further evaluated. Continuing with the target

function, now the cofactors in "B" must be evaluated, which

are the negative (01010101) and the positive (01011111).

The negative cofactor in "B" is already a variable and,

therefore, will no further be considered. The positive

cofactor in "B" may be evaluated in subcofactors in both

"A" and "C". In "A", they are negative (01010101), which

is the variable "C" and positive (11111111). The cofactors

in "C" are negative (00001111) which is the variable

"A"and positive (11111111), which is the constant "1". The

only missing evaluation is the "C" cofactors of the target

function, which are negative (00000011) and positive

(11111111). The positive is a constant and is no longer

evaluated. The negative cofactor in "C" is then evaluated as

subcofactors in "A" or "B". The subcofactors in "A" are

negative (00000000), which is a constant and positive

(00110011), which is a variable. The negative cofactor in

"C" is also evaluated in "B", generating the negative

subcofactor (00000000) which is a constant and the positive

one (00001111), which is the variable "A". The

intermediate set of allowed subfunctions is: {01010111,

01010101, 00000011, 01110111, 00110011, 01011111,

00001111, 11111111, 00000000}.

This set is then combined two by two by the AND and OR

operations. The final allowed subfunctions are: {00000000,

11111111, 00001111, 01011111, 00000011, 00111111,

00000111, 01111111, 00000101, 00010011, 01111111,

00000001, 01010111, 01010101, 00010001, 00000011,

01110111, 00110011, 01110111.

3.2. Creating Single Variable Functions

The creation of single variable subfunctions consists in

generating the functions for each variable, as they appears

in the truth table form. The order in this case is

lexicographic.

Continuing with the example of the target function Q =

A*B+C, the variables are “A” (00001111), “!A”

(11110000), “B” (00110011), “!B” (11001100), “C”

(01010101) and “!C” (10101010). These are the variables,

but not all will be considered since only a subset of them

are available in the allowed subfunction list. They are

{00001111, 00110011, 01010101). This is consistent with

the desired behavior once the target function is positive

unate for all variables and, therefore, no negated variable is

required for its description.

3.3. Combining and Evaluating Subfunctions

After generating the single variable subfunctions, the

algorithm starts combining these subfunctions in order to

generate larger subfunctions until finding the exact function

targeted. The combination is performed by picking two by

two all subfunctions and run the AND and OR operations

over them. In this case, the elements “A” and “B” would

generate the subfunctions “A*B” and “A+B”. The

generated subfunctions are only accepted if they are present

in the allowed subfunctions list. If the subfunction is

accepted, it is added in a different set, containing all

functions generated in this step of combination and it is

added in the already generated subfunctions, that will either

avoid further generations or keep all possible

implementations for the same subfunction, in order to be

selected the best one according to its number of operations

(nodes of the AIG), which will reflect a smaller area in the

final circuit.

For instance, in the example of the target function

(01010111), the single variable subfunctions that were also

on the allowed subfunctions hash are the following

{00001111, 00110011, 01010101}. These subfunctions are

used to generate other subfunctions by applying the AND

and OR operations. Hence, in step 2 we have 00001111 &

00110011 => 00000011 and 00001111 | 00110011 =>

00111111. These two new subfunctions are also on the

allowed list and, therefore, are accepted.

Step 1 is the one variable subfucntions. Step 2 is the

combination by the operations AND and OR of the

subfunctions in Step 1. Step 3 is the combination of the

subfunctions in Step 1 with the ones in Step 2, avoiding

duplicity and removing (striked-though) the subfunctions

not present in the allowed list.

Table 1. Functions after every step of composition

Step 1 Step 2 Step 3

00001111 00000011 00011111

00110011 00111111 00000001

01010101 00010001 00000111

 01110111 01111111

 00000101 00110111

 01011111 01010111

 00010101

The algorithm stops as it finds a subfunction that is exactly

the same as the target function. In this example, the solution

is the combination of 00001111 AND 00110011 followed

by an OR combination with 01010101. These steps, which

were performed on the subfunctions, may now be

performed on the AIG nodes. Figure 3 present the step by

step on the AIG nodes.

Step 1

Step 2

Step 3

Figure. 3. The application of the composition identified on the

subfunctions in the AIG nodes.

4. EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithm, a comparative

test was performed. A set composed of 3982 functions

presenting up to 4 variables was processed by GF (from

SIS) and by the proposed method. As the goal is to

optimize the resulting And-Inverter Graph, the equations

generated by ABC and Equation Composition algorithm

were used as input for the FRAIG algorithm, available in

ABC. Table 2 presents the sum of nodes present in all

AIGs, the nodes average for each AIG and their deviations.

Figure 5 presents the distribution of gained nodes by the

proposed method when compared to ABC followed by

FRAIG.

Table 2. Comparison of And-Inverter Graphs generated by ABC + FRAIG

and the proposed method

 ABC + FRAIG Proposed Method

Number of Nodes 32813 31258

Average No. Nodes 8.24 7,84

Average Nodes Reduction 4,97% -

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Difference in Number of Nodes

N
u
m
b
e
r
o
f
F
u
n
c
ti
o
n
s

Fig. 5. Distribution of number of nodes gained by the proposed

method when compared to ABC + FRAIG. Negative values

represent advantage to ABC + FRAIG, while positive values

represent advantage to the proposed method.

5. CONCLUSION

This paper has proposed a novel approach for local AIG

rewriting algorithm. The proposed method is based on a

new synthesis paradigm (functional composition) and it is

able to produce smaller graphs (AIGs) when compared to

other approaches, which consist in traditional two steps

(equation factoring + graph construction). Moreover, the

proposed algorithm has the ability to take secondary criteria

for optimization into account, or a set of criteria (by using a

cost function) and evaluating the already known costs of

each partial solution during the composition procedure.

Logic depth results have shown that the algorithm is very

effective in taking secondary criteria into account.

6. ACKNOWLEDGMENT

Research partially funded by Nangate Inc under a

Nangate/UFRGS research agreement, by CNPq Brazilian

funding agency, and by the European Community’s Seventh

Framework Programme under grant 248538-Synaptic.

7. REFERENCES

[1] G.D. Hachtel and F. Somenzi, Logic Synthesis and

Verification Algorithms, Kluver Academic Publishers

(1996).

[2] E. Sentovich, K. Singh, L.Lavagno, C. Moon, R. Murgai, A.

Saldanha, H. Savoj, P. Stephan, R. Brayton and A.

Sangiovanni-Vincentelli, SIS: A system for sequential circuit

synthesis. Tech. Rep. UCB/ERL M92/41. UC Berkeley,

Berkely, 1992.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A

System for Sequential Synthesis and Verification.

http://www-cad.eecs.berkeley.edu/~alanmi/abc

[4] Mishchenko, A., Chatterjee, S., and Brayton, R.. DAG-aware

AIG rewriting a fresh look at combinational logic synthesis.

DAC '06, 532-535.

[5] Mishchenko, A. and Sasao, T. 2003. Large-scale SOP

minimization using decomposition and functional properties.

DAC '03, 149-154.

[6] M.C. Golumbic and A. Mintz, Factoring Logic Functions

Using Graph Partitioning, ICCAD ’99. IEE Press,

Piscataway, NJ, 195-199.

[7] IWLS2003. No more counting of Literals. Presentation of

discussion Group 3 at IWLS 2003. Available at:

www.sigda.org/iwls/iwls2003/no_more_literals.ppt

[8] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton,

“FRAIGs: A Unifying Representation for Logic Synthesis

and Verification”, ERL Technical Report, EECS Dept., UC

Berkeley, March 2005.

[9] T. Figueiro, R. P. Ribas, A. I. Reis, AIG Rewriting

Considering Multiple Objectives, 25th South Symposium on

Microelectronics, Porto Alegre, Brazil, May 2010.

[10] Cong, J., Wu, C., and Ding, Y. 1999. Cut ranking and

pruning: enabling a general and efficient FPGA mapping

solution. FPGA '99, NY, 29-35.

[11] J. Cong and Y. Ding, "FlowMap: An optimal technology

mapping algorithm for delay optimization in lookup-table

based FPGA designs," IEEE Trans. CAD, Vol.13, No. 1

(January 1994), pp. 1--12.

[12] Chatterjee, S., Mishchenko, A., and Brayton, R.. Factor cuts.

ICCAD '06, 143-150.

[13] Osvaldo Martinello Jr, Felipe S. Marques, Renato P. Ribas,

André I. Reis. KL-Cuts: A New Approach for Logic

Synthesis Targeting Multiple Output Blocks. DATE 2010,

pp. 777-782.

[14] Lech Jozwiak, Artur Chojnacki, Aleksander Slusarczyk,

"High-Quality Circuit Synthesis for Modern Technologies,"

ISQED 2008, pp.168-173.

[15] A. Reis, A. Rasmussen, L. Rosa, R. Ribas., Fast Boolean

Factoring with Multi-Objective Goals, International

Workshop on Logic & Synthesis, IWLS 2009.

[16] Lee, H. -. 1978. An Algorithm for Minimal TANT Network

Generation. IEEE Trans. Comput. 27, 12 (Dec. 1978), 1202-

1206

