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ABSTRACT 

This work presents a logic synthesis algorithm that works 

on top of an And-Inverter-Graph (AIG) data structure and 

the final goal is to minimize the number of nodes in the  

AIG. This paper introduces a novel approach for AIG 

construction based on a new synthesis paradigm called 

functional composition. The idea is to perform the synthesis 

by associating simpler AIGs, in a bottom-up approach. 

Results indicate that this approach present a gain of 5% 

when compared to first optimize an equation and then build 

the AIG. 
 

1. INTRODUCTION 

 

Algorithmic logic synthesis is usually performed in two 

steps, one performed over Boolean equations (regardless 

any physical property) and another where the resulting logic 

is mapped into a physical cell library or other physical 

implementation. The first step is composed of several logic 

operations such as Decomposition Extraction, Factoring, 

Substitution and Elimination [1]. These operations may be 

either explicitly performed (SIS [2]) or implicitly 

performed by other methods such as And-Inverter Graph 

(AIG) rewriting (ABC [3]).  

The main goal of technology independent synthesis is to 

compute a representation of a given combinational circuit 

with optimized costs measured independently of the target 

technology. These costs may be related to literals (e.g. 

number of literals and logic depth) or AIG nodes (e.g. 

number of nodes and graph depth measured in nodes). In 

SIS [2], the technology independent cost was based on 

literals. In more recent tools like ABC [3], the technology 

independent cost is based on AIG nodes. The use of AIG 

nodes is justified as it is expected to produce a better 

correlation with final area and delay once the circuit has 

been mapped to a target technology [4]. This advantage 

with respect to literals comes from (1) the fact that AIGs 

are multi-level representations allowing sharing of nodes; 

and (2) the AIG node is a simple structure, which keeps 

correlation with area as all nodes have homogeneous simple 

granularity. AIGs are graphs whose nodes are limited to 

two-input ANDs while inverters are indicated by a special 

attribute on the edges of the network. Sum of products [5] 

and factored forms [6] were used in SIS [2] to represent 

logic function of single output circuit nodes. However, the 

granularity of the logic functions could vary, leading to 

optimizations in the number of literals that would not 

translate in better circuit characteristics after mapping [4, 

7]. These issues have been discussed in the IWLS 

benchmarking effort [7]. For this reason, most modern logic 

synthesis tools work on top of AIG representations [4, 8-9], 

including tools for FPGA synthesis that use the concepts of 

K-cuts [10-11], factor cuts [12] and KL-cuts [13] on AIGs. 

However, a recent work by Joswiak [14] has shown that for 

small circuits there is still room for area gains with respect 

to AIG based tools. In this sense there is a need for an 

aggressively Boolean algorithm for AIG rewriting. One 

example of such an algorithm devoted to factoring is 

presented in [15]. An additional advantage of that algorithm 

[15] is that it operates by functional composition of smaller 

known sub-functions, which allows the method to optimize 

cost functions that take more than just literals into account. 

Notice that the factoring algorithms presented in [6, 15] do 

not include sub-expression reuse, which makes multi level 

representations like TANT networks [16] competitive 

compared to two-level expressions [5]. The contribution of 

this paper is to adapt the algorithm in [15] to operate in 

multilevel expressions considering shared sub-expressions. 

This paper presents a novel approach for AIG construction, 

based on this new synthesis paradigm called functional 

composition [15]. The approach proposed herein consists in 

constructing AIGs from association of simpler AIGs, in a 

bottom-up approach.  

This paper is organized as follows. Section 2 presents basic 

concepts regarding technology independent synthesis 

algorithms and AIGs. Section 3 presents the proposed 

algorithm for AIG construction. Section 4 presents and 

discusses the results, compared with previous works and 

SIS/ABC available approach and the final section discusses 

the conclusions of this paper. 

 

 

2. BASIC CONCEPTS 

 
A Boolean function describes how to determine a Boolean value 

output based on some logical calculation performed over Boolean 

inputs. A function f is said to be a subfunction of g whenever exist 

another function h and an operation OP for which g = f op h. An 

equation is one representation of a function, which may also 

be described as a Binary Decision Diagram (BDD) or as a 



A  B  C 

A B C A B A C A C B C 

Truth Table (TT), for instance. Every representation of a 

function may be classified as canonical or non-canonical. A 

representation is said to be canonical if every function will 

always be described exactly in the same way. Examples of 

canonical representations are BDDs and TTs (as long as the 

variables ordering are the same). Equations are non-

canonical representations of a function; therefore, the same 

function may be described by different equations. For 

instance, equations (1), (2) and (3) represent exactly the 

same function. An equation is composed of literals. A literal 

is an instance of a variable (positive literal, for instance 

“A”) or its complement (negative literal, for instance “!A”. 
F=A*B+C    (1) 

F=A*B+A*C    (2) 

F=(A+C)*(B+C)    (3) 

AND-INV graphs (AIGs) are another way to represent 

Boolean functions. An AIG is a graph composed 

exclusively of two inputs AND gates and inverters. It is 

frequent the representation of the inverters as a special flag 

on the graph’s edge and therefore all nodes on the graph 

represent two input ANDs. Figure 1 present one AIG for 

the equation F=A*!B*C. AIGs are a not canonical, 

therefore, different AIGs may represent the same Boolean 

function. Figure 2 present three different AIGs for the same 

function (they implement the equations presented 

previously). 
 

Figure 1. Sample of AIG for the equation F=A*!B*C 

 

 

3. PROPOSED ALGORITHM 

 

The proposed algorithm is performed in three steps: 

Building the Allowed Subfunctions, Creating Single 

Variable Functions and Combining and Evaluating 

Subfunctions. First, the set of allowed subfunctions is built 

to reduce the number of subfunctions to evaluate. Then, all 

possible subfunctions of one variable are created, 

considering them as the seeds to the associations that follow 

it. Finally, the initial (one variable) subfunctions are 

combined and evaluated until the target function is 

generated.  
 

   

(a) (b) (c) 

Figure 2. AIG representing the same function but described 

as (a) F= A*B+C, (b) F= A*B+A*C and (c) F=(A+C)*(B+C). 

 

3.1. Building the Allowed Functions   

In order to reduce the search space of subfunctions and, 

therefore, improve the performance and space required by 

the algorithm, a set of allowed subfunctions is determined. 

This set is composed by all positive and negative cofactors 

of the target function, and its "sub-cofactors", built 

recursively. Moreover, AND and OR operations are 

performed on all subfunctions generated, two by two. Also, 

the target function is also included as an allowed 

subfunction. 

For example, consider the target function to be Q = 

A*B+C. Since it contains three literals, it will be 

represented by 8 bits. Therefore, the target function is 

(01010111). The allowed subfunctions will be the target 

function, plus the cofactors of this function in all variables 

"A", "B" and "C", its subcofactors and the results of AND 

and OR operations on the cofactors and subcofactors. 

First, consider the cofactors in "A" of the target function, 

which are the negative (01010101) and the positive 

(01110111). The negative cofactor in "A" is already a 

variable, and no further evaluation will be performed (it is 

C). The positive cofactor in "A" will be evaluated as 

subcofactor in "B" and in "C". In "B" they are negative 

(01010101) and positive (11111111) while in "C" they are 

negative (00110011) and positive (11111111). Both 

positive subcofactors are constant "1" and no longer are 

evaluated. Both negative cofactors are variables and are 

also no further evaluated. Continuing with the target 

function, now the cofactors in "B" must be evaluated, which 

are the negative (01010101) and the positive (01011111). 

The negative cofactor in "B" is already a variable and, 

therefore, will no further be considered. The positive 

cofactor in "B" may be evaluated in subcofactors in both 

"A" and "C". In "A", they are negative (01010101), which 

is the variable "C" and positive (11111111). The cofactors 

in "C" are negative (00001111) which is the variable 

"A"and positive (11111111), which is the constant "1". The 

only missing evaluation is the "C" cofactors of the target 

function, which are negative (00000011) and positive 

(11111111). The positive is a constant and is no longer 

evaluated. The negative cofactor in "C" is then evaluated as 

subcofactors in "A" or "B". The subcofactors in "A" are 



negative (00000000), which is a constant and positive 

(00110011), which is a variable. The negative cofactor in 

"C" is also evaluated in "B", generating the negative 

subcofactor (00000000) which is a constant and the positive 

one (00001111), which is the variable "A". The 

intermediate set of allowed subfunctions is: {01010111, 

01010101, 00000011, 01110111, 00110011, 01011111, 

00001111, 11111111, 00000000}. 

This set is then combined two by two by the AND and OR 

operations. The final allowed subfunctions are: {00000000, 

11111111, 00001111, 01011111, 00000011, 00111111, 

00000111, 01111111, 00000101, 00010011, 01111111, 

00000001, 01010111, 01010101, 00010001, 00000011, 

01110111, 00110011,  01110111. 

 

3.2. Creating Single Variable Functions 

The creation of single variable subfunctions consists in 

generating the functions for each variable, as they appears 

in the truth table form. The order in this case is 

lexicographic.  

Continuing with the example of the target function Q = 

A*B+C, the variables are “A” (00001111), “!A” 

(11110000), “B” (00110011), “!B” (11001100), “C” 

(01010101) and “!C” (10101010). These are the variables, 

but not all will be considered since only a subset of them 

are available in the allowed subfunction list. They are 

{00001111, 00110011, 01010101). This is consistent with 

the desired behavior once the target function is positive 

unate for all variables and, therefore, no negated variable is 

required for its description. 

 

3.3. Combining and Evaluating Subfunctions   

After generating the single variable subfunctions, the 

algorithm starts combining these subfunctions in order to 

generate larger subfunctions until finding the exact function 

targeted. The combination is performed by picking two by 

two all subfunctions and run the AND and OR operations 

over them. In this case, the elements “A” and “B” would 

generate the subfunctions “A*B” and “A+B”. The 

generated subfunctions are only accepted if they are present 

in the allowed subfunctions list. If the subfunction is 

accepted, it is added in a different set, containing all 

functions generated in this step of combination and it is 

added in the already generated subfunctions, that will either 

avoid further generations or keep all possible 

implementations for the same subfunction, in order to be 

selected the best one according to its number of operations 

(nodes of the AIG), which will reflect a smaller area in the 

final circuit. 

For instance, in the example of the target function 

(01010111), the single variable subfunctions that were also 

on the allowed subfunctions hash are the following 

{00001111, 00110011, 01010101}. These subfunctions are 

used to generate other subfunctions by applying the AND 

and OR operations. Hence, in step 2 we have 00001111 & 

00110011 => 00000011 and 00001111 | 00110011 => 

00111111. These two new subfunctions are also on the 

allowed list and, therefore, are accepted. 

Step 1 is the one variable subfucntions. Step 2 is the 

combination by the operations AND and OR of the 

subfunctions in Step 1. Step 3 is the combination of the 

subfunctions in Step 1 with the ones in Step 2, avoiding 

duplicity and removing (striked-though) the subfunctions 

not present in the allowed list.  
 

Table 1. Functions after every step of composition 

Step 1 Step 2 Step 3 

00001111 00000011 00011111 

00110011 00111111 00000001 

01010101 00010001 00000111 

 01110111 01111111 

 00000101 00110111 

 01011111 01010111 

  00010101 

 

The algorithm stops as it finds a subfunction that is exactly 

the same as the target function. In this example, the solution 

is the combination of 00001111 AND 00110011 followed 

by an OR combination with 01010101. These steps, which 

were performed on the subfunctions, may now be 

performed on the AIG nodes. Figure 3 present the step by 

step on the AIG nodes. 
 

Step 1  

 

Step 2  

 

Step 3  

 

Figure. 3. The application of the composition identified on the 

subfunctions in the AIG nodes. 

 

4. EXPERIMENTAL RESULTS 

 

In order to evaluate the proposed algorithm, a comparative 

test was performed. A set composed of 3982 functions 

presenting up to 4 variables was processed by GF (from 

SIS) and by the proposed method. As the goal is to 

optimize the resulting And-Inverter Graph, the equations 

generated by ABC and Equation Composition algorithm 

were used as input for the FRAIG algorithm, available in 



ABC. Table 2 presents the sum of nodes present in all 

AIGs, the nodes average for each AIG and their deviations. 

Figure 5 presents the distribution of gained nodes by the 

proposed method when compared to ABC followed by 

FRAIG.  

Table 2. Comparison of And-Inverter Graphs generated by ABC + FRAIG 

and the proposed method  

 ABC + FRAIG Proposed Method 

Number of Nodes 32813 31258 

Average No.  Nodes 8.24 7,84 

Average Nodes Reduction 4,97% - 
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Fig. 5. Distribution of number of nodes gained by the proposed 

method when compared to ABC + FRAIG. Negative values 

represent advantage to ABC + FRAIG, while positive values 

represent advantage to the proposed method. 

 

5. CONCLUSION 

 

This paper has proposed a novel approach for local AIG 

rewriting algorithm. The proposed method is based on a 

new synthesis paradigm (functional composition) and it is 

able to produce smaller graphs (AIGs) when compared to 

other approaches, which consist in traditional two steps 

(equation factoring + graph construction). Moreover, the 

proposed algorithm has the ability to take secondary criteria 

for optimization into account, or a set of criteria (by using a 

cost function) and evaluating the already known costs of 

each partial solution during the composition procedure. 

Logic depth results have shown that the algorithm is very 

effective in taking secondary criteria into account. 
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