
A SOFTWARE PROGRAMMABLE INFRASTRUCTURE FOR
ASSERTION BASED POST SILICON DEBUG

Abner Luı́s Panho Marciano∗, José Augusto Miranda Nacif†∗,
Celina Gomes do Val∗, Antônio Otávio Fernandes∗, Claudionor Nunes Coelho Jr.∗

Computer Science Department, Universidade Federal de Minas Gerais∗

Universidade Federal de Viçosa, Florestal Campus†

{alpm,jnacif,celina,otavio,coelho}@dcc.ufmg.br

ABSTRACT

Even with simulation and formal verification techniques,
some bugs reach the silicon, thus, nowadays post-silicon
debug techniques are vital for the fabrication of reliable
integrated circuits. One approach used is the assertion-
based design, in which an assertion processor (AP) can be
employed to monitor synthesized property checkers. To re-
duce area overhead and provide more flexibility through the
project stages, in this paper an external AP is implemented
using a softcore processor and embedded software. A case
study of the architecture using a MIPS32 based processor
is also discussed. The area of the synthesized processor
with the structure needed to connect itself to the external
AP presented an increased of only 0.5%. Furthermore, the
implementation costs of the proposed architecture are anal-
ysed.

1 INTRODUCTION

Verifying integrated circuit designs has always been a
growing challenge. If we consider a circuit with n inputs
and m possible states, the verification has a complexity of
2m+n. According to Moore’s law, every 18 months the den-
sity of the existing circuits doubles, what would, in the best
case scenario, duplicate the problem’s complexity.

As current designs complexity grows, the time needed in
the design verification stage increases [1]. Verifying high-
complexity modern industrial designs is a challenging task
because it is impractical to simulate all possible configura-
tions of the chip. Therefore, the impact on time-to-market
and economical issues are significant, making necessary to
pursue new techniques to overcome these limitations. Still,
these methods can miss some corner cases [2], which may
pass unnoticed through manufacturing tests, and lead to
bugs in field, such as the famous Intel’s Pentium P5 FDIV
bug [3].

In order to certify that a design will behave as expected,
pre-silicon verification and debug techniques are employed.
However, these techniques, which include formal verifica-
tion and simulation, are inadequate to ensure that the first
silicon will be error free. Thus, post-silicon debug tech-

niques [2] are employed to help in the identification of the
cause of these failures.

The inclusion of assertion monitors in the designs [1, 4,
5] is a well-known strategy to carry on the debugging pro-
cess. By adopting this approach, designers are able to ver-
ify if certain constraints are met by a selected logic block.
Thus, when a certain assertion fails it is possible to trace its
origin and point out what is the exact cause of the error.

Extracting data from these assertions can be tricky. To
provide a mean to manage and access the information from
the assertions, an Assertion Processor (AP) module is com-
monly attached and synthesized with the design [6]. This
approach imposes an area overhead and is not flexible, as
once the Assertion Processor is synthesized it is not possi-
ble to modify its behavior. In order to address these issues,
we propose to move the AP to an external IP, called the AP
module (APM).

To make the design process more flexible, we propose a
framework that can be used in both prototyping and post-
silicon stages. On the first scenario, during prototyping
stage, the designer can first check if the circuit under de-
bug (CUD) behaves as expected using a FPGA. On the sec-
ond scenario, post-silicon, the CUD and the assertions are
manufactured in silicon and the APM is implemented in a
FPGA. On both approaches we use the same interface be-
tween CUD and APM.

Our architecture uses simple assertions from OVL (Open
Verification Library) [7], to implement a scan-chain design
that is controlled by an external AP that is programmed by
software.

This paper is organized as follows: Section 2 shows re-
lated work; Section 3 presents the methodology and the ar-
chitecture developed; Section 4 shows the results; Section
5 presents conclusion and future work.

2 RELATED WORK

Debugging silicon requires the analysis of the chip’s in-
ternal state. This is a challenging task due to the lack of
observability [8], caused by the limited number of pins
available to internal signal visualization. Observability can
be enhanced by adopting one of two common techniques:

1



Real-time observability and Time-intrusive, scan-based ob-
servability [9].

Time-intrusive observability can be reached by reusing
test structures like JTAG and scan chains commonly present
in industrial designs. By using these structures, engineers
can debug the circuit by halting the system and carrying
out a set of signals. This is the main idea behind the IEEE
1149.1 standard [10], where boundary-scan registers are
used to store signals while the data is extracted through a
test access port (TAP). On real-time approach, internal sig-
nals are monitored and captured in real time. To achieve
this observability, a trace-based debug architecture is gen-
erally used. This debug method consists on storing the state
of a selected set of signals on a memory, called trace-buffer,
while the design is running at full speed. Later the data
stored on this buffer can be serially extracted from the chip.

Current design flows usually rely on assertion-based and
property checking methodologies, as stated by H. Foster
in [5]. In these methodologies, designers include assertions
that describe design’s properties that must hold during sim-
ulation or be proved by formal verification techniques. If
one of these assertions fails, an error between designer’s
intention and implementation is found.

In order to implement these techniques, the Open Ver-
ification Library (OVL) provides a rich set of Verilog
and VHDL assertion modules, called monitors. The
Open Verification Library (OVL), a vendor- and language-
independent assertion library, is a powerful tool on the de-
sign process. It enables designers to elaborate the assertion
specification once, and then use it on multiple verification
processes, such as simulations and formal verification tools.

On a simple approach, a dedicated connection to the
monitor would be needed, what in large scale systems could
result in unnecessary area overhead. A solution for this
problem was presented by [6], where OVL modules were
combined with the IEEE 1149.1 standard, creating a scan-
based architecture that can be used in silicon and or to em-
ulate the design in an FPGA, at full clock speed.

3 METHODOLOGY

As presented in [5], the monitors provided by OVL are
modules that checks invariant properties. It supplies sim-
ple monitors such as the assert never, that reports a fail-
ure when its target must never evaluate TRUE, to more fine
grained ones, as the assert win change, that verifies a value
change on an event window.

However, the OVL modules can just be used on the sim-
ulation/emulation phases of the design, as it is not synthe-
sizable. To surpass this problem, [6] presented modified
version of the OVL so it could be arranged on a scan-chain
approach. In order to modify this structure, extra pins were
needed, three inputs and two inputs. Figure 1 depicts an
standard OVL module and its modified version. Table 1
describes the new module’s pins.

This work presents a silicon debug framework composed
by a Wrapper Interface (WI) and an external monitoring
system. The proposed architecture is shown in Figure 2.

assert_module

reset_n

clk

test_expr

(a)

assert_module

reset_n

clk

test_expr

(b)

ei

esci

escen_n

esclk

eo

esco

Figure 1. (a) Typical OVL assertion; (b) OVL
assertion modified for scan-chain architec-
ture.

Table 1. Signal descriptions for Figure 1(b)
Signal Description IO

reset n Reset Active Low Input

clk System Clock Input

test expr Any HDL test expression Input

ei Error Input Input

esci Error Scan Input Input

eo Error Output Output

esco Error Scan Output Output

esclk Error Clock Input

escen n Error Scan Enable Active Low Input

The WI module wraps the circuit under debug (CUD).
On WI’s internal interface, are connected the assertion
scan-chains and, optionally, manage signals like clock, re-
set and halt, providing more controllability. Also, WI offers
access to shared memories on the IC, that can be used as a
mean to inject instructions and fetch general data. Outside,
WI provides a simple and narrow bus which will interface
with the external monitor.

On the external monitoring system, present on a FPGA,
lies a Xilinx MicroBlaze [11] softcore processor, which is
connected to a Processor Local Bus (PLB) [12] as a mas-
ter and communicates to its slaves. A slave PLB compli-
ant interface was created to interface with the bus from the
CUD. Furthermore, an UART module, provided by Xilinx,
was also attached to the PLB as a slave, to provide an inter-
face with an embedded software which runs on the softcore.
This software, called GreenBug, supplies a simple interface
where engineers can easily control the processor and mon-
itor the assertions. GreenBug also provides access to the
IC’s memory, making possible to pass and retrieve data on
a debug basis.

2



Circuit Under Debug

~

~

Monitor

~

~

PLB

UART

WI

External Bus

Main
Control

Unit

PLB Slave IP

APM

Figure 2. Proposed Architecture

4 CASE STUDY

To quantitatively demonstrate the benefits of the pro-
posed architecture, a case study of the presented architec-
ture was done. A single core MIPS32 processor, imple-
mented in Verilog, was used, and relevant features like 5
stage pipe-line, instruction and data caches employed. We
chose this 32-bit RISC architecture due to its extensively
use in embedded solutions such as routers, gateways, some
SGI computers and video-game consoles [13].

To assess the debugging process, 45 monitors were
chained across the processor modules. Table 2 describes
the types of assertions used.

The MIPS core was wrapped within the WI, also provid-
ing access to its central control unit and its shared memory
unit. Thus, the design would be ready for post-silicon and
prototyping stages.

When an assertion fails, an interruption is dispatched
by the APM PLB Slave module, and the softcore enter
the dump mode. Once dump mode is reached, the pro-
cessor is stalled, and GreenBug automatically starts dump-
ing all assertion data from the target’s scan-chain in a non-
destructive manner. It is also possible to enter dump mode
through a command on GreenBug.

Table 2. OVL-based monitors used
Assertion Ensures

assert next Proper cycle timing between two events

assert implication A specified consequent expression is
TRUE if the specified antecedent expres-
sion is TRUE

assert never Property must never evaluate true

assert range Legal value within a valid range

assert change Value change on an event window

assert unchange Value must not change on an event win-
dow

assert zero one hot Value of a specified expression is zero or
one-hot

4.1 Results

The project was synthesized using the Xilinx ISE Em-
bedded Edition 12.2 [14] to Xilinx Virtex5 XC5VLX110T.
Virtex 5 is a series of high-performance logic with ad-
vanced serial connectivity FPGA’s. XC5VLX110T FPGA
provides 110.000 gates.

We compare two approaches: a prototyping FPGA based
one, where all the design is contained in a single FPGA
(APM+MIPS+WI); a first-silicon, with the circuit under de-
bug in silicon and the APM in a separated FPGA. Table 3
summarizes the synthesis results. The obtained outcome
evidences the APM overall low cost in both stages, making
possible the use of far more simpler FPGAs.

Table 3. Synthesis results for APM

Logic Utilization
Prototyping1 First-Silicon2

Used Total Used Total

Number of Slices 3174 18% 1675 9%

Number of Slice Registers 4793 6% 2983 4%

Number of Slice LUTS 5936 8% 2833 4%
1 APM+MIPS+WI
2 APM only

Table 4 compares the MIPS with and without the WI.
Therefore, its possible to infer WI’s cost, which raised in
just 0.5% in an overall analysis.

Table 4. Synthesis results for MIPS

Logic Utilization
With WI Without WI

Used Total Used Total

Number of Slices 1669 9% 1583 9%

Number of Slice Registers 1909 2% 1891 2%

Number of Slice LUTS 3498 5% 3274 4%

5 CONCLUSION AND FUTURE WORK

In this paper we designed and implemented an external
assertion processor as well as a software based infrastruc-
ture to aid post silicon debug. We discussed the assertion-
based and property checking based debugging methodolo-

3



gies. Further, a case study of the proposed architecture us-
ing a MIPS32 based processor was done. The synthesis
results showed promissing results, with minor area occupa-
tion (∼ 9%) by the AP on a FPGA system, and insignifi-
cant area overhead after wrapping the processor core with
the module used to interface with the AP.

For future work we expect to improve the architecture
proposed, in order to implement a fully reconfigurable as-
sertion architecture, where the engineer can disable or en-
able sets of assertions on a design using software.

6. REFERENCES

[1] M. Abramovici, P. Bradley, K. Dwarakanath,
P. Levin, G. Memmi, and D. Miller, “A recon-
figurable design-for-debug infrastructure for socs,”
in Proceedings of the 43rd annual Design Automa-
tion Conference, ser. DAC ’06. New York, NY,
USA: ACM, 2006, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/1146909.1146916

[2] M. Abramovici, “In-system silicon validation and de-
bug,” Design Test of Computers, IEEE, vol. 25, no. 3,
pp. 216 –223, may-june 2008.

[3] M. L. M. Subramaniam, “Abstraction for analytic ver-
ification of concurrent software systems,” in Sympo-
sium on Abstraction, Reformulation and Approxima-
tion, ser. SARA ’98, 1998, pp. 85–94.

[4] A. Gharehbaghi, M. Babagoli, and S. Hessabi,
“Assertion-based debug infrastructure for soc de-
signs,” in Microelectronics, 2007. ICM 2007. Inter-
natonal Conference on, dec. 2007, pp. 137 –140.

[5] H. Foster, D. Lacey, and A. Krolnik, Assertion-Based
Design, 2nd ed. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 2003.

[6] J. A. M. Nacif, F. M. de Paula, H. Foster, C. J.
N. C. Jr., and A. O. Fernandes, “The chip is ready.
am i done? on-chip verification using assertion
processors.” in International Conference on Very
Large Scale Integration of System-on-Chip (VLSI-
SoC), 2003, pp. 111–116.

[7] Accellera, “Open verification library
technical subcommittee,” Available at:
http://www.accellera.org/activities/ovl/, 2011.

[8] E. Hung and S. J. E. Wilton, “On evaluating signal se-
lection algorithms for post-silicon debug,” in Quality
Electronic Design (ISQED), 2011 12th International
Symposium on, march 2011, pp. 1 –7.

[9] B. Vermeulen and S. Goel, “Design for debug: catch-
ing design errors in digital chips,” Design Test of Com-
puters, IEEE, vol. 19, no. 3, pp. 35 –43, may/jun 2002.

[10] “Supplement to ieee std 1149.1-1990, ieee stan-
dard test access port and boundary-scan architecture,”
IEEE Std 1149.1b-1994, p. i, 1995.

[11] Xilinx, “Microblaze processor reference guide (em-
bedded development kit edk 13.1),” Available
at: http://www.xilinx.com/support/documentation/,
2011.

[12] ——, “Logicore ip processor local
bus (plb) v4.6 (v1.05a),” Available at:
http://www.xilinx.com/support/documentation/,
2011.

[13] M. T. Inc., “Mips technologies website,” Available at:
http://www.mips.com, 2011.

[14] Xilinx, “Embedded development kit edk 12.2,”
Available at: http://www.xilinx.com/products/design-
tools/ise-design-suite, 2011.

4


