
DESIGNING A SET OF SOFT IP-CORES FOR GAMES WITH
PROTOTYPING IN FPGA BASED ON IPPROCESS

João Carlos Nunes Bittencourt, Anfranserai Morais Dias

Technology Department, State University of Feira de Santana
Av. Transnordestina S/N, Novo Horizonte – 44.036-000 – Bahia, Brazil.

{joaocarlos,anfranserai}@ecomp.uefs.br

ABSTRACT

Searching for new process models which satisfy the
embedded systems demands, has been reflected in efforts
to develop reusable IP-cores based on the Rational
Unified Process (RUP). Among the alternative process,
highlight the ipPROCESS, a Brazilian initiative in order
to create a standard and enhance the development of
integrated circuit design in the country. In this context,
this paper presents an application of ipPROCESS
designing a set of IP-cores for FPGA game projects. The
design is based on a car racing game to support the
construction of IP-cores considered essential for game
project, such as control, handling and visualization.

1. INTRODUCTION

Technological advances in the microprocessors
development has grown exponentially in the last
decades, making them smaller and shipping a larger
number of transistors. This growth rate was referred
from Moore's Law [1] and verified by periodic insertion
of new integrated circuits (ICs) on the market with large
processing capacity. This law is due to Gordon E.
Moore, who in 1965 observed that the density of
components on integrated circuits was doubling in
regular time periods, implying that this behavior would
persist for a long time [2].

This elevated growth rate results in a short space of
time for a new design to reach the market. Allied to this,
there have been the increasing complexity of projects
due to the high density of components in the ICs, where
a complete system can be embedded - System-on-Chip
(SoC). An alternative way to the development of these
ICs is the creation of Intellectual Property Cores (IP-
cores) based on the RUP (Rational Unified Process) [3]
with prototyping in FPGA devices (Field Programmable
Gate Array).

To suit the demands of new products with
increasingly varied requirements, have been developed
methodologies for IC design using IP-cores. Among
them stand out the Virtual Socket Interface Alliance
(VSIA), Reuse Methodology Manual (RMM) and
recently ipPROCESS [4]. This process model aims to
decompose the design into well defined stages, meeting
the requirements established in the initial stage. Its main
purpose is to reduce design time, by dividing the efforts
required to design an IP-core.

This paper introduces an ipPROCESS
implementation to development of IP-cores for games in
FPGA. The design is based on a car racing game, similar
to the old 8-bit consoles that were popular in the 80s.

Documentation and RTL modules were developed with
in order to its reuse. The RTL model was programmed in
Verilog and embedded in an FPGA Development Kit.

The approach employed in this study surrounds all
development stages, from initial design up to the current
stage of the project. The sections 2 and 3 presents a brief
description of the concepts necessary for developing the
project. Sections 4, 5, 6 and 7 show the ipPROCESS
stages of the project cycle, to one of the IP-cores
developed. Finally the results will be reported until the
present stage, as well as future prospects.

2. IP-CORE

In last decade there has been an increasing demand
in the market for equipment that add a growing set of
features (such as communication, entertainment and
information access). In this context, the IP-cores is
introduced as a complementary element to the
development paradigm called System-on-Chip (SoC).
From the use of cores, entire the embedded system can
now be integrated and implemented on a single chip, by
reusing pre-built and pre-verified components, aiming to
reduce the time and effort to project [5].

The IP-cores of this work were classified as soft
cores, since the circuits are open to new
implementations, and its synthesis can be repeated for
different programmable logic technologies without
changing its operation. In addition, all documentation
will be available the extent to which all requirements are
met. The framework described is able to receive
changes. Once known for its architecture, the modules
can be reused in applications which demands for its
resources.

3. IPPROCESS

The need of process models for the SoC development
resulted in the advent of sophisticated new
methodologies for create IP-cores. In most cases, these
methods uses paradigms frequently used in software
engineering, such as modeling by diagram, extensive
documentation, and functionality testing.

The ipPROCESS is a process model for development
of IP-cores with FPGA prototyping, based on RUP [3].
This process is intended, through a set of activities
assigned to specialized roles in the organization, to
transform the requirements into an IP-core, fulfilling
time constraints, cost and quality.

The life cycle proposed by the ipPROCESS is
decomposed into four sequential phases (Figure 1). At
the end of each one, a verification of the criteria

requirements is performed. Only after this validation it's
possible to proceed to the next phase [4][6].

Figure 1 – Life cycle of ipPROCESS.

The process steps are described below [6]:
1. Conception: planning stage, where it is defined

the scope and project requirements. The expected
result is a Functional Specification document
containing the project requirements.

2. Architecture: stage where a stable architecture is
designed for the project.

3. RTL Design: The goal of this phase is to build a
prototype and verify the IP-core based on the
architecture defined during the previous stage.
This step concentrates the highest level of effort
within the process.

4. Prototyping: The focus of this phase is to create a
prototype of the design and finalization of the user
documentation.

4. METHODOLOGY

The ipPROCESS was used to develop a set of soft
IP-cores that will be used for the creation of simple
games. The development stages were established in
order to attend the full process cycle for each IP-core.
The project has been developed over six months
(including learning period). The development team
consists of two members (graduate students with no
design experience).

The design of the (soft) IP-cores consists, at the
present time, in five modules: video controller,
multiplexer 8-bit color, positioning controller of objects
on the screen, analyzer of crashes and the main
controller. Were also implemented the following graphic
elements: car model, rectangular objects and characters.

The user documents, also called artifacts, have been
designed as the project life cycle was restarted, initiating

the development of a new IP-core. Throughout this
process were carried out reviews/audits. Revisions are
performed during the verification process, when design
flaws are identified [6]. A change of requirement in an
IP-core, which has not yet completed its project cycle,
can also imply in considerable changes in stable modules
. In this case it is necessary to identify the affected IP-
core and restart the process to meet new requirements or
restrictions.

Due to the large amount of content for the developed
modules in this work, the methodology adopted by this
paper presents the results (diagrams and
implementations) to only one module (position control).

5. CONCEPTION

The project proposal was drawn from the work
started in [7], in order to expand its scope. The goal was
to develop a set of IP-cores to support the design of
FPGA games.

This is a car racing game that operates in graphic
mode. The player can control the car by using buttons or
an analog stick to change the speed and position. The
game output is displayed on a VGA monitor. The
scenario consists of a road with obstacles, as well as
other cars, simulating a racing environment. The screen
also shows information about the distance and the “lives”
left to the player. Figure 3 illustrates a graphical view
designed along this step.

Figure 2 – Illustrated perspective of the project.

The estimated effort for this stage of the process life
cycle was the lowest since it's the initial phase of the
project and the designer has no control over the final
architecture model [6]. The following sections provide
an overview of the artifacts presented as a result for this
step.

5.1. Vision Document

This is the project business card, since it presents an
IP-core overview for the client. This document clarifies
possible questions with a more detailed project proposal,
and possible solutions. This document presents details
from the initial project design, including:

1. Product description: it's a car racing game that
operates in graphic mode. The player can

control the car through buttons or an analog
stick (joystick);

2. Stakeholders: the team is formed by two
members, which the first is responsible for
preparing the documentation and describe the
RTL modules, and the second to plan and
perform the verification;

3. Product Perspective: the game should allow the
use of two control interfaces, and operate based
on the used patterns, providing a good
gameplay experience;

4. Product Features: the final product is a
prototype of the input/output circuit (control and
video interface) embedded in an FPGA that
contain the game programming;

5. Standards: the project is based on the standard
VGA video with a resolution of 640x480 pixels;

5.2. Requirement Specification

The purpose of this document is to specify all the
project requirements, functional and nonfunctional.
Functional requirements describe the actions that should
be able to run. This information is taken from the
development of use cases, responsible for documenting
the inputs, processes and generated outputs. On the other
hand, non-functional requirements represent the
characteristics that the IP-core should have, or
restrictions under which it will operate. These
characteristics are related to techniques, algorithms,
technologies, standards and system features.

In order to improve the project management scope
and facilitate the priorities establishment throughout the
project, the requirements presented in this document are
classified according to their level of importance:

1. Important: without this requirement the system
works, but not as well.

2. Essential: this requirement must be attended for
the system to work.

3. Desirable: requirement that does not
compromise the system operation.

The requirements are identified and classified for
each IP-core. The position controller requirements,
according to the above classification, are shown in Table
1.

Table 1 – Position controller requirements.

Important Set initial value of offset for the object;

Essential Setup the register of speed of the objects
on the screen;

Desirable Not apply;

6. ARCHITECTURE

This step is the conversion of ideas into an
architectural model [6]. During this phase are elaborated
documents that support the IP-core design.

The major milestone of this stage is to identify the
architecture components, once considered the
requirements of IP-core. The elements are modeled in

class diagrams and use cases. In some cases it is also
possible to describe the processes through finite state
machines (state diagrams) [8].

Eight elements were identified and make up the
architecture of the racing cars game, which are presented
as a class diagram in Figure 4. The architecture model
uses the Model View Controller (MVC) nomenclature to
sort the Soft IPs.

Figure 4 – Project design representation.

The GameController is responsible for performing
the mapping of all rules and requirements. of graphics
and operating the game To it were connected the
CollisionController, which is dedicated to determine the
collision of objects. The PositionController is assigned
to control the movement of objects (in both axes) on the
screen. The VideoController and CollorController
module are part of the IP designed to displaying images
on the screen, according to default VGA resolution. The
structures named with Model suffix represents the
graphics. These models contains information on size and
position of each graphic. The classes in this scope also
requires the a exclusively designed controller to
manipulate the information of its respective model.

6.1 User Cases

The aim of this document is the specification of
project use cases. That's includes the following
information: actors, flow of primary and secondary
events, special requirements, preconditions and post-
conditions, non-functional requirements and extension
points.

In [8] is presented a study case of ipPROCESS
application using Real Time UML (UML-RT).
However, the modeling can be described using UML 2.0
without any lost in the architecture interpretation. The
following sections present the artifacts of this stage.

The diagram shown in Figure 5 presents an example
of use case used in the position controller documentation.
This IP-core is responsible for moving an object on the
screen, according to the controls flags from the game
controller (Game Ctrl).

In this structure, each module/object is represented by
a actor, and actions are labeled in the circles. This
diagram indicates the flow of actions over a control
operation. After the player presses a button, the Game
Ctrl object identify which one was pressed, as it enables
the Position Ctrl module. The new position is validated
and transmitted to the moved object from its own
controller by Game Ctrl.

Figure 5 – Use case diagram of position controller.

6.2. Class Diagram

This document presents the module analysis, based
on their use case. Each class diagram describes the
modules operations, inputs and outputs, as well as its
relationship with other IP-cores.

The descriptions are provided by a sequence diagram.
The relationships shown in this diagram and the actions
taken are transcribed as one or more classes. The Figure
6 depicts the controller position class diagram.

<<Control>>
PositionController

-_start_boud int = 0
-_end_bout int = 479
+ enable : bool
+ direction: bit
+ speed: int
- move_counter_reg int = 10 * speed
+ current_position: int
+ offset: int
+ new_position: int
+ ready: bool

+ set_move_register(): int
+ set_new_position(): int
+ new_position_validate (new_position: int): bool

Figure 6 – Example of a class representation.

The parameters are identified with the “_” character
before its name, representing the internal scope. The
input and output ports are highlighted as public
attributes (preceded by the symbol “+”). The internal use
registers and operations are defined as private attributes
(preceded by the symbol “-”).

7. RTL DESIGN

This stage consists in the IP-core development and
verification, according to the specifications and
architecture [4]. The projects were described in Verilog
and synthesized using a design, synthesis and simulation
tool from Altera Quartus II v9.0 [9]. The RTLs have
been developed for the following modules: position
controller, video controller, color multiplexer, and
graphical models of rectangular elements and the car
representation.

In parallel programming the module, are checked for
inconsistencies in the documentation and implementation
failures. Generally these problems are identified during
the functional verification. For example, the positions

controller verification plan is responsible for: ensure of
new position validation, check the system response to
input signals and the behavior of output signals.

8. CONCLUSION AND FUTURE WORK

Before the proposal designed in [7], and by the
adoption of ipPROCESS, it was possible to provide
elements that allow the continuity to the project. This
characteristic is due to the extensive documentation
designed during the development of the first stage.

The major difficulty throughout the project was due
the change of paradigm. Because of experience lack, the
work to execute the life cycle of ipPROCESS demanded
greater effort during the first stages of documentation.
Currently the development cycle has been following the
effort scales established by Lima [8]. Using this process
model allowed the division of game design in well
defined stages, with specific objectives and
predetermined standards.

The project partial result is the documentation of
design and planning architecture and the RTL graphic's
core (graphic objects and video controller), and game
control elements (position controller and collision).

The next step is to review the artifacts, improving the
core game control and design the complementary
elements to the game: obstacles generator; interface for
monitoring the game progress. Finally, the design should
be prototyped and made available.

REFERENCES

[1] R. R. Schaller, Moore´s law: Past, present and future, IEEE
Spectrum 34, 6 (June), 52–59, 1997.

[2] D. C. Brock, Understanding Moore's law: four decades of
innovation, Chemical Heritage Foundation, 2006.

[3] P. Kruchten, The Rational Unified Process: An
Introduction, 3 ed, Boston: Pearson Education, 2003.

[4] M. S. M. De Lima, “ipPROCESS: Um processo para
desenvolviemnto de IP-cores com Prototipação em FPGA”.
Recife : Master's Thesis/UFPE, 2005.

[5] J. C. Palma, F. Moraes and N. L. V. Calazans, “Métodos
para Desenvolvimento e Distribuição de IP Cores”, Master’s
thesis, Faculdade de Informática – PUCRS, 2001.

[6] F. S. dos Santos, “Reestruturação do ipPROCESS e
Inclusão dos Processos Fundamentais do Ciclo de Vida”,
Recife: Master's Thesis/UFPE, 2009.

[7] J. C. N. Bittencourt, I. S. Santos, A. M. Dias,
“Desenvolvimento de um Jogo de Corrida em FPGA”,
Proceedings VIII Brazilian Symposium on Games and Digital
Entertainment, Rio de Janeiro, 2009.

[8] M. Lima, F. Santos, J. Bione, T. Lins, E. Barros,
“ipPROCESS: A Development Process for Soft IP-core with
Prototyping in FPGA”, MSE, 2005.

[9] ALTERA, “Quartus II Web Edition Software”, online
[http://www.altera.com/products/software/quartus-ii/web-
edition/qts-we-index.html]

	DESIGNING a set of Soft IP-cores for games with
	Prototyping in FPGA based on ipprocess
	Abstract

