A FAST RANDOM BASED MOTION ESTIMATION SEARCH ALGORITHM
!Cassio Cristani‘Pargles Dall'Oglio,**Marcelo Porto,2Sérgio Bampi‘Luciano Agostini.

! GACI, Federal University of Pelotas — UFPel
2 Institute of Informatics, Federal University ofdRBrande do Sul - UFRGS

ABSTRACT falls. The GRS also explores important characiesish
the motion estimation such as locality (explorirte t
The efficiency of motion estimation is directly a&dd central region in the search area) and also iterati
to the used search algorithm. In this paper, a fastv refinement (providing the convergence to more simil
motion estimation (ME) algorithm is presented. This region).
algorithm is called Galaxy Random Search (GRS) iand
uses random search as strategy to avoid local raifaits
in high definition videos, with a good tradeoff Wwetn
quality and computational cost. The GRS algorithess h
basically two steps, the first one is the evaluatd the
central region of the search area, and the secordiso
the random evaluation. These two steps can beyeasil
paralyzed. Thus, it is an interesting alternatioe rhulti-
core or hardware implementations of video codet® T
developed algorithm was applied to ten HD 1080eid 2.MOTION ESTIMATION
sequences, and the average quality results wasiGufe
other fast ME algorithms. Compared to full searEB)(The video compression is based on the eliminatibn o
algorithm, the GRS can reduce the number of condpare redundant data. The ME is responsible to find a

The paper is organized as follow: the motion edionas
explained in section 2. In section 3 is presented@RS
algorithm. In this section, the quality results and
computational cost of the GRS algorithm are also
evaluated. The comparisons with other algorithnasnfr
literature are shown in section 4. In section 5 the
conclusion are presented.

candidate blocks in more than 200 times. correlation between frames, mapping the temporal
redundancy in motion vectors. These vectors inditia¢
1. INTRODUCTION spatial displacement of a block in the current &anm

relation with a reference frame. For each blocktied
Motion estimation (ME) is the most important stagfe current frame a motion vector is generated, indigathe
current videos encoders. This step represents §0#teo best matching position in the search area from the
total computational complexity of current video eosl reference frame. The ME algorithm defines how the
[1]. On the other hand, ME is where the video coder search for the best matching is done. The compuiziti
achieves the biggest coding gains. The ME aims tocost and quality results of the ME depends on tirexd
identify and to reduce the temporal redundancy eeiw the ME algorithm efficiency. There are severalikirity
neighbor frames. metrics to compare the block from the current fraand

The performance of motion estimation is directly the candidate block in the search area. In thipahe

connected to the used search algorithm. The altgosit Sum of Absolute Differences (SAD) [3] is used.

are divided in two classes: optimum and sub-optimum The ME algorithm should have a good tradeoff betwee
(fast) algorithms. The Full Search Algorithm (F&] [s computational cost and quality, and this is noirapte
the only one which represents the optimum quaésult, task. The efforts to developing new ME algorithne a
since it evaluates all the candidate blocks in arcde being a relevant theme to scientific community ndayes.
range. However, its computational cost is extrenhé.
The sub-optimum algorithms use some heuristicpéed
up the search convergence. The use of these hesirist

makes possible a large reduction in the number OfThe motion estimation aims to find the temporal

compared candidate bl(_)cks (CCB), compared to I:S'redundancies in digital videos, reducing the voluofe
However, these heuristics turns fast algorithms . . : . . .
: O information, with small, or even imperceptible, des in
susceptible to local minima falls. Thus, when theal visual qualit
minimum is not found, the quality of motion estiimat q Y.
may suffer great losses in relation to the optinresult. The ME algorithms should be fast and presents low
Though, current search algorithms aim to ally lamstan computational complexity. The Galaxy Random Search
computational complexity and high quality. algorithm (GRS) uses the randomness as way to avoid
local minima falls. The random search of candidate
blocks in the search area is a strategy to traesfdd
peaks, which is an insurmountable barrier only wath
traditional iterative refinement. However, the rand

3. THE GRSALGORITHM

In this paper, a new fast motion estimation algonit
called Galaxy Random Search (GRS) is presenteds Thi
algorithm uses a random search of some candidat&l
in the search area as a strategy to avoid locainmain

search applied in an isolate way does not consielezral This strategy aims to increase the probability\afiding
important characteristics of motion estimation. TRS local minima falls. The N candidate blocks are eatdd,
algorithm does an iterative search in the centrgian of and the one with the lowest SAD is chosen. Thisores
the search window, which guarantees good resulenwh explored by a final iterative refinement which $ri¢o
the video presents low motion activity, where good identify blocks with fewer residues. This refinernés
vectors are found next to the center region. identical to that one applied in the center, infttst step.

Figure 1 presents a flowchart of GRS algorithmtHis Finally, a comparison is made between the bestkbloc
flowchart, both steps are made sequentially. Howeve from the first and second steps. From those, selected
they can be made in parallel, since there are rta da the one which presents the best similarity, andrbé&on
dependences between them. That way, a hardwareector is generated for this candidate block.
implementation can explore this characteristicnréase

the global performance of the video encoder. Figure 2 presents a search example of the GRSithligpr

with N=6. In this figure it is possible to obserbeth
steps presented in this algorithm.

Evaluate the central
block

a
a
a
Co|C
O s S A ¢ B
Find | t SAD 1
: I CO Cl a
. 1
I No ! a fo[l1| T2
1 v !
1
: Second step Evaluate the 4 Lowest SAD at i o | A [Ro I
| neighbors the Center? 1
! ! fo|l| T2

Figure 2 — The GRS algorithm with N=6.

e End In the first step, the GRS does the evaluatioméndenter
of the search window, indicating by the blocks ‘i@’
Figure 1 - Flowchart of GRS algorithm Figure 2, highlighted in orange. The central blaoid

their neighbors (blocks gt in Figure 2) are compared.

In the first step _the algorithm_ explores the cdntegion The iteration begins due to the fact that the righighbor
of the search window. Candidate blocks from theteren presents the lowest SAD. The next three neighbors

of the search window tend to present good resuits o (blocks c1 in Figure 2) are evaluated, and the gssc

similarity. It happens, because considering therecur stops because the center presents the lowest Salll.re

block, the candidate block located in the sameiapat rperefore, the block indentified with “C” is theiélock
position of the reference frame, tends to represe@t ioined from the first step.

same frame region. The GRS algorithm explores the

central block, and its four neighbors as well. T3®D In the second step, the GRS algorithm evaluates N
calculation for these blocks is done and if thedsinSAD ~ random candidate blocks (N=6 in this example), mdrk
is found at the center, the search is finished. Wine with “a@” in Figure 2, and highlighted in green. The
lowest SAD is found in one of the four neighbors, a candidate block identified with “A” in Figure 2 ithe
iterative refinement is started, considering thevelst block that presented the smaller SAD among the six
SAD position as the new center, and evaluatinghitse candidate blocks which were evaluated. This blogk i
neighbors. This iterative refinement is repeatetdl time used as center for the final refinement. This final
lowest SAD is found at the center. The iterative refinement is highlighted in blue in Figure 2. hetfirst
refinement gives the GRS algorithms the possibildy refinement stage, four neighbors are evaluatedckslo
converge to regions which present smaller SAD i th “ro’ in Figure 2). The iterative process begins beedbs
search window. right neighbor (block “R in Figure 2) has the lowest

. . . . SAD result. Therefore, block QR becomes the new
The refinement used in the GRS is the same refineme center and the algorithm iterates with the evatwanf

used in the final ste_p of Diamond Search (DS) atigor their three neighbors (blocks;"rin figure 2). Again, the
[4], called Small_ Diamond Search Pgttern (_SDSP) [4] pest result was also found in right neighbor. & skcond
Nevertheless, - this ap_pr_o_ach, used In-an isolate, WaYiteration, after comparing the center and theighkors
presents great susceptibility to local minima falls (blocks “r"in Figure 2), the best result in the center is
In the second step, the GRS algorithm evaluates Nfound (block “R” in Figure 2), and the searchingden
random candidate blocks in the search window. $tsige ~ This central block is the best block found in tleeand

uses a random function to choose the N candidatekbl step.

The last stage of GRS is the identification of thest
block among the central evaluation result (block)“&énd
the final refinement (block “R”). The block with sifter
SAD is the block that will be used, and for thiesdk a
motion vector will be generated.

One characteristic from GRS algorithm is the paktib
of the generation of different motion vectors faffetent

executions in the same video. This occurs due & th

random step, which can choose different candidiaiekb

increasing of the search range. This happens becaus
when the search area is increased, the algoritteméa
regions in the frame to search better candidatekblo
However, the quality gains tend to stabilize famage of
[-48, +48] or higher. From ranges equal or higheant
[-48, +48], the algorithm does not use the regitars
from the center, especially by the iterative preess
satisfying the stop condition before the end of ghesn
search window.

to a new execution on the same search window. Hemvev 3.2. Computational Cost Evaluation
one evaluation from the average deviation showed th The impacts, caused by the variation of the N \aked

this variation is too small, about to be despised.

3.1. Quality Evaluation

The GRS algorithm was implemented in C language and

evaluated in software. These evaluations were ratie
first two hundred frames in ten 1080p videos samfié
The chosen videos were: blue_sky,
pedestrian_area, rolling_tomatoes,

sun_flower, tractor, traffic, station2 and riverbed

A determinant factor in GRS quality is the numbér o

random candidate blocks (N). Greater values ofrid te
generate better quality results, since a higherbsunof
candidate blocks will be evaluated.

Figure 3 presents a graphic with quality resubefiGRS
algorithm, considering the variation of the N valwand
the search window size. In this figure, the bloide svas
16x16 pixels. The search area varies in the hoti¢@xis

man_in_car,
rush_hour,

and the quality (PSNR) varies in the vertical axis.

Analyzing the graphic, it is possible to realizatths the
number of random candidate blocks increases, thétyju
is also increased, considering a specific searctuav.
The quality increasing observed between curves
practically proportional. That way, considering yothe
quality results, the best result, for a specifiarsh area,
will be achieved from the biggest N value.

345

340

35

330

325

PSNR {(dB)

320

315

310

Range 8 Rangel6 Range 24 Range 32 Range 48 Range 64

Figure 3 — GRS quality evaluation for different sda
ranges and N values.

The range defines how many pixels for each sida of

current block belong to the search window. In thegbic
presented in Figure 3 it is possible to observe fivaa
fixed N value, the quality increases according he t

the search window size can also be perceptibleugfiro
computational cost evaluation. Table 1 shows thedityu
results and the computational cost for the GRSrilgo,
considering the variation of the N value. The guyali
increase is measured according to the achieved RBNR
the computational cost is measured in number of
compared candidate blocks (CCB).

The results presented in Table 1 considers a seangfe

of [-64, +64]. The difference in PSNR between the
smallest and the greatest N value is 0.77 dB. Timsber

of CCBs grows for higher N values. The increasigsg i

about 6% among N=4, 8, 12 and 16. However, fordtigh

N values the increasing is about 13%. The beseutfid
between quality and computational complexity,

obtained for N =16. In this case, the quality gagon N
= 4 is about 0.5 dB, with an increasing in the namtf
CCBs of 34% (73.2x106 CCBs).

Table 1 — Evaluation of the number of N influente i
PSNR and CCBs

is

N Value PSNR (dB) # CCBs (x16)
4 3326 52.80
8 +0.25 +6.97
12 +0.39 +12.73
16 +0.50 +2040
24 +0.66 +32.63
32 +0.77 +46.78

Table 2 shows the average quality and computational
costs results considering the search window range
variation for N=16. The GRS algorithm presents alsm
increasing in the number of candidate blocks with t
growing of the search window range. However, asdcit
before, the quality gains tend to stabilizes fosemarch
range of [-48, +48]. The PSNR gain is only 0.01dB
comparing the ranges [-48, +48] and [-64, +64].

Table 2 — Evaluation of the search range influeimce
PSNR and CCBs

SearctRangt PSNR (dB # CCBs (x10°)
8 31.8¢ 7687
16 +1.3¢ +6.51
24 +1.71 +8.4F
32 +1.9¢ +9.1F
48 +2.07 +9.5]
64 +2.0¢ +9.5¢€

The use of a higher search window implies in an
additional cost of memory. In this case, the insesia the
range from, 48 to 64 pixels does not bring a sigaift
improving in quality. The surplus charge to memdgy
avoided and the quality loss are practically nutiew a
range of [-48, +48] is used. This range is used&o
considered the one with the best tradeoff betwesity
and computational cost. Considering the range, [-48
+48], the GRS algorithm achieves a PSNR gain o7 2.0
dB in comparison to the
[-8, +8] range. The number of CCBs presents areass

of 12%.

4. COMPARATIVE RESULTS

The GRS algorithm was compared to some well know
ME algorithms: Full Search (FS), Diamond Search)(DS
Three Step Search (TSS) [6] and Four Step Sea®8)(F

5. CONCLUSIONS

This paper presented a new motion estimation dhguari
called Galaxy Random Search (GRS). This algorithm
uses a random search as strategy to avoid locamain
falls. GRS also explores two important charactiessin
the motion estimation process: (1) the exploratibithe
central region of the search window since this esgilon
helps to achieve good results for low motion attivi
videos, where good candidate blocks are frequéntigd
close to the center; and (2) the use of a finahiiee
refinement, giving the GRS algorithms the posgipild
converge to better similarity areas.

The GRS algorithm was evaluated with ten HD 1080p
video sequences. The number of random blocks and th
size of search area used by the GRS algorithm were
explored. The search range with the best tradesffrdeen
quality results and computational cost is [-48, Hdi&els.

[7]. Table 3 presents the average PSNR, number of e GRS algorithm presented a better result in depfn

compared candidate blocks (CCBs) by each algorithm,
considering the search range of [-48, +48]. The GRS

algorithm can improve the quality results obtailgdhe
other evaluated fast algorithms. The GRS algorithm
achieves a quality gain of 0.72dB in relation to DS
algorithm. Compared to FSS, the gain is about 1B4
and 1.8 dB in comparison to TSS algorithm. Thislitya
gain is related to the efficiency to avoid locahima falls

of the GRS algorithms, especially in high resolutio
videos.

Analyzing the computational cost, the GRS algorittan
reduce about 200 times the number of CCBs, compared
FS algorithm. However, compared to the other fast
algorithms, the GRS algorithm presents an incr@asiee
number of CCBs. The GRS algorithm presents twodime

more CCBs than DS algorithm. When compared to FSS,

the number of CCBs grows about 26%, and 68% in
relation to TSS algorithm.

Table 3 — Comparison among GRS, FS, DS, FSS and TSS]

algorithms.
Algorithm PSNR (dB) #CCBs(x10% |
FS 35.89 14662.60
GRS 33.74 73.16
DS 33.02 48.07
FSS 32.40 58.03
TSS 30.94 43.51

Even presenting higher number of CCBs than therothe
fast algorithms, the GRS algorithm achieves bejtedity
than all other algorithms and it can reach a simila
better processing rate, since both steps of the GR
algorithm can be done in parallel (there are noadat
dependences between these steps).

quality, among all compared fast algorithms. Th&NRS
gains compared to the DS algorithm is about 0.72 dB
The number of CCBs of the GRS algorithms is higher
than all other fast algorithms, but it is 200 timegser
than the CCBs of FS. However, the processing ritieeo
GRS algorithm can be equal or even superior toethos
algorithms, due to the possibility of parallelizatiof its
two steps, since there are no data dependencesdretw
then.

6. REFERENCES

[1] GONZALES, R, WOODS, R, 2004. Digital
Image Processing using MATLAB, Prentice Hall, Upper
Saddle River, NJ, 2004.

[2] PURI, A. et al. Video Coding Using the
H.264/MPEG-4 AVC Compression Standarlsevier
Signal Processing: Image Communication, [S.l.], n. 19,
p.793-849, 2004.

RICHARDSON, I. H.264 and MPEG-4 Video
Compression Video Coding for Next-Generation
Multimedia. Chichester: John Wiley and Sons, 2003.

[4] Zhu, S., MA, K., A New Diamond Search
Algorithm for Fast Block-Matching Motion Estimation
In: IEEE Transactions on Image Processivpl. 9, No.
2, 2000, pp. 287-290.

[5] Xiph.org: Test media, available
<http://media.xiph.org/video/deH/ May, 2011.

[6] Jing, X., CHAU, L, An efficient three-step
search algorithm for Block motion estimatiotEEE
Transactions on MultimedjgS.l.], Vol. 6, No. 3, 2004,

at

§Pp. 435-438.

[7] Tasdizen, O., et al., Dynamically Variable Step
Search Motion Estimation Algorithm and a Dynamigall
Reconfigurable Hardware for Its ImplementatidBEE
Transactions on Consumer Electroniad&l. 55, No. 3,
2009, pp. 1645-1653.

