
A FAST RANDOM BASED MOTION ESTIMATION SEARCH ALGORITHM

1Cássio Cristani, 1Pargles Dall’Oglio, 1,2Marcelo Porto, 2Sérgio Bampi, 1Luciano Agostini.

1 GACI, Federal University of Pelotas – UFPel

2 Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS

ABSTRACT

The efficiency of motion estimation is directly related

to the used search algorithm. In this paper, a new fast
motion estimation (ME) algorithm is presented. This
algorithm is called Galaxy Random Search (GRS) and it
uses random search as strategy to avoid local minima falls
in high definition videos, with a good tradeoff between
quality and computational cost. The GRS algorithm has
basically two steps, the first one is the evaluation of the
central region of the search area, and the second one is
the random evaluation. These two steps can be easily
paralyzed. Thus, it is an interesting alternative for multi-
core or hardware implementations of video codecs. The
developed algorithm was applied to ten HD 1080p video
sequences, and the average quality results was superior to
other fast ME algorithms. Compared to full search (FS)
algorithm, the GRS can reduce the number of compared
candidate blocks in more than 200 times.

1. INTRODUCTION

Motion estimation (ME) is the most important stage of
current videos encoders. This step represents 80% of the
total computational complexity of current video coders
[1]. On the other hand, ME is where the video coder
achieves the biggest coding gains. The ME aims to
identify and to reduce the temporal redundancy between
neighbor frames.

The performance of motion estimation is directly
connected to the used search algorithm. The algorithms
are divided in two classes: optimum and sub-optimum
(fast) algorithms. The Full Search Algorithm (FS) [2] is
the only one which represents the optimum quality result,
since it evaluates all the candidate blocks in a search
range. However, its computational cost is extremely high.
The sub-optimum algorithms use some heuristics to speed
up the search convergence. The use of these heuristics
makes possible a large reduction in the number of
compared candidate blocks (CCB), compared to FS.
However, these heuristics turns fast algorithms
susceptible to local minima falls. Thus, when the local
minimum is not found, the quality of motion estimation
may suffer great losses in relation to the optimum result.
Though, current search algorithms aim to ally low cost in
computational complexity and high quality.

In this paper, a new fast motion estimation algorithm,
called Galaxy Random Search (GRS) is presented. This
algorithm uses a random search of some candidate blocks
in the search area as a strategy to avoid local minima

falls. The GRS also explores important characteristics in
the motion estimation such as locality (exploring the
central region in the search area) and also iterative
refinement (providing the convergence to more similar
region).

The paper is organized as follow: the motion estimation is
explained in section 2. In section 3 is presented the GRS
algorithm. In this section, the quality results and
computational cost of the GRS algorithm are also
evaluated. The comparisons with other algorithms from
literature are shown in section 4. In section 5 the
conclusion are presented.

2. MOTION ESTIMATION

The video compression is based on the elimination of
redundant data. The ME is responsible to find a
correlation between frames, mapping the temporal
redundancy in motion vectors. These vectors indicate the
spatial displacement of a block in the current frame, in
relation with a reference frame. For each block of the
current frame a motion vector is generated, indicating the
best matching position in the search area from the
reference frame. The ME algorithm defines how the
search for the best matching is done. The computational
cost and quality results of the ME depends on directly of
the ME algorithm efficiency. There are several similarity
metrics to compare the block from the current frame and
the candidate block in the search area. In this paper, the
Sum of Absolute Differences (SAD) [3] is used.

The ME algorithm should have a good tradeoff between
computational cost and quality, and this is not a simple
task. The efforts to developing new ME algorithms are
being a relevant theme to scientific community nowadays.

3. THE GRS ALGORITHM

The motion estimation aims to find the temporal
redundancies in digital videos, reducing the volume of
information, with small, or even imperceptible, losses in
visual quality.

The ME algorithms should be fast and presents low
computational complexity. The Galaxy Random Search
algorithm (GRS) uses the randomness as way to avoid
local minima falls. The random search of candidate
blocks in the search area is a strategy to transpose SAD
peaks, which is an insurmountable barrier only with a
traditional iterative refinement. However, the random

search applied in an isolate way does not consider several
important characteristics of motion estimation. The GRS
algorithm does an iterative search in the central region of
the search window, which guarantees good results when
the video presents low motion activity, where good
vectors are found next to the center region.

Figure 1 presents a flowchart of GRS algorithm. In this
flowchart, both steps are made sequentially. However,
they can be made in parallel, since there are no data
dependences between them. That way, a hardware
implementation can explore this characteristic to increase
the global performance of the video encoder.

Evaluate the central
block

End

Random N CBs

Find lowest SAD
among N CBs

Evaluate the 4
neighbors

Lowest SAD at
the Center?

No

Yes

Evaluate the 4
neighbors

Lowest SAD at
the Center?

Find Lowest SAD
(central and random)

No

Yes

First step

Second step

Figure 1 - Flowchart of GRS algorithm

In the first step the algorithm explores the central region
of the search window. Candidate blocks from the center
of the search window tend to present good results of
similarity. It happens, because considering the current
block, the candidate block located in the same spatial
position of the reference frame, tends to represent the
same frame region. The GRS algorithm explores the
central block, and its four neighbors as well. The SAD
calculation for these blocks is done and if the lowest SAD
is found at the center, the search is finished. When the
lowest SAD is found in one of the four neighbors, an
iterative refinement is started, considering the lowest
SAD position as the new center, and evaluating its three
neighbors. This iterative refinement is repeated until the
lowest SAD is found at the center. The iterative
refinement gives the GRS algorithms the possibility to
converge to regions which present smaller SAD in the
search window.

The refinement used in the GRS is the same refinement
used in the final step of Diamond Search (DS) algorithm
[4], called Small Diamond Search Pattern (SDSP) [4].
Nevertheless, this approach, used in an isolate way,
presents great susceptibility to local minima falls.

In the second step, the GRS algorithm evaluates N
random candidate blocks in the search window. This stage
uses a random function to choose the N candidate blocks.

This strategy aims to increase the probability of avoiding
local minima falls. The N candidate blocks are evaluated,
and the one with the lowest SAD is chosen. This region is
explored by a final iterative refinement which tries to
identify blocks with fewer residues. This refinement is
identical to that one applied in the center, in the first step.

Finally, a comparison is made between the best blocks
from the first and second steps. From those, it is selected
the one which presents the best similarity, and the motion
vector is generated for this candidate block.

Figure 2 presents a search example of the GRS algorithm,
with N=6. In this figure it is possible to observe both
steps presented in this algorithm.

 a

 a

 a

 c0 c1

 c0 c0 C c1

 c0 c1 a

a r0 r1 r2

 r0 A R0 R r2

 r0 r1 r2

Figure 2 – The GRS algorithm with N=6.

In the first step, the GRS does the evaluation in the center
of the search window, indicating by the blocks “c” in
Figure 2, highlighted in orange. The central block and
their neighbors (blocks “c0” in Figure 2) are compared.
The iteration begins due to the fact that the right neighbor
presents the lowest SAD. The next three neighbors
(blocks c1 in Figure 2) are evaluated, and the process
stops because the center presents the lowest SAD result.
Therefore, the block indentified with “C” is the best block
obtained from the first step.

In the second step, the GRS algorithm evaluates N
random candidate blocks (N=6 in this example), marked
with “a” in Figure 2, and highlighted in green. The
candidate block identified with “A” in Figure 2 is the
block that presented the smaller SAD among the six
candidate blocks which were evaluated. This block is
used as center for the final refinement. This final
refinement is highlighted in blue in Figure 2. In the first
refinement stage, four neighbors are evaluated (blocks
“r 0” in Figure 2). The iterative process begins because the
right neighbor (block “R0” in Figure 2) has the lowest
SAD result. Therefore, block “R0” becomes the new
center and the algorithm iterates with the evaluation of
their three neighbors (blocks “r1” in figure 2). Again, the
best result was also found in right neighbor. In the second
iteration, after comparing the center and their neighbors
(blocks “r2”in Figure 2), the best result in the center is
found (block “R” in Figure 2), and the searching ends.
This central block is the best block found in the second
step.

The last stage of GRS is the identification of the best
block among the central evaluation result (block “C”) and
the final refinement (block “R”). The block with smaller
SAD is the block that will be used, and for this block a
motion vector will be generated.

One characteristic from GRS algorithm is the possibility
of the generation of different motion vectors for different
executions in the same video. This occurs due to the
random step, which can choose different candidate blocks
to a new execution on the same search window. However,
one evaluation from the average deviation showed that
this variation is too small, about to be despised.

3.1. Quality Evaluation
The GRS algorithm was implemented in C language and
evaluated in software. These evaluations were made to the
first two hundred frames in ten 1080p videos samples [5].
The chosen videos were: blue_sky, man_in_car,
pedestrian_area, rolling_tomatoes, rush_hour,
sun_flower, tractor, traffic, station2 and riverbed.

A determinant factor in GRS quality is the number of
random candidate blocks (N). Greater values of N tend to
generate better quality results, since a higher number of
candidate blocks will be evaluated.

Figure 3 presents a graphic with quality results from GRS
algorithm, considering the variation of the N value and
the search window size. In this figure, the block size was
16x16 pixels. The search area varies in the horizontal axis
and the quality (PSNR) varies in the vertical axis.
Analyzing the graphic, it is possible to realize that as the
number of random candidate blocks increases, the quality
is also increased, considering a specific search window.
The quality increasing observed between curves is
practically proportional. That way, considering only the
quality results, the best result, for a specific search area,
will be achieved from the biggest N value.

Figure 3 – GRS quality evaluation for different search
ranges and N values.

The range defines how many pixels for each side of a
current block belong to the search window. In the graphic
presented in Figure 3 it is possible to observe that for a
fixed N value, the quality increases according to the

increasing of the search range. This happens because
when the search area is increased, the algorithm has new
regions in the frame to search better candidate blocks.
However, the quality gains tend to stabilize for a range of
[-48, +48] or higher. From ranges equal or higher than
[-48, +48], the algorithm does not use the regions far
from the center, especially by the iterative processes
satisfying the stop condition before the end of the given
search window.

3.2. Computational Cost Evaluation
The impacts, caused by the variation of the N values and
the search window size can also be perceptible through
computational cost evaluation. Table 1 shows the quality
results and the computational cost for the GRS algorithm,
considering the variation of the N value. The quality
increase is measured according to the achieved PSNR and
the computational cost is measured in number of
compared candidate blocks (CCB).

The results presented in Table 1 considers a search range
of [-64, +64]. The difference in PSNR between the
smallest and the greatest N value is 0.77 dB. The number
of CCBs grows for higher N values. The increasing is
about 6% among N=4, 8, 12 and 16. However, for higher
N values the increasing is about 13%. The best tradeoff,
between quality and computational complexity, is
obtained for N =16. In this case, the quality gain upon N
= 4 is about 0.5 dB, with an increasing in the number of
CCBs of 34% (73.2x106 CCBs).

Table 1 – Evaluation of the number of N influence in
PSNR and CCBs

N Value PSNR (dB) # CCBs (x106)

4 33.26 52.80
8 +0.25 +6.97
12 +0.39 +13.73
16 +0.50 +20.40
24 +0.66 +33.63
32 +0.77 +46.78

Table 2 shows the average quality and computational
costs results considering the search window range
variation for N=16. The GRS algorithm presents a small
increasing in the number of candidate blocks with the
growing of the search window range. However, as cited
before, the quality gains tend to stabilizes for a search
range of [-48, +48]. The PSNR gain is only 0.01dB
comparing the ranges [-48, +48] and [-64, +64].

Table 2 – Evaluation of the search range influence in
PSNR and CCBs

Search Range PSNR (dB) # CCBs (x106)
8 31.84 76.87
16 +1.35 +6.51
24 +1.77 +8.45
32 +1.96 +9.15
48 +2.07 +9.51
64 +2.08 +9.56

N

The use of a higher search window implies in an
additional cost of memory. In this case, the increase in the
range from, 48 to 64 pixels does not bring a significant
improving in quality. The surplus charge to memory is
avoided and the quality loss are practically null when a
range of [-48, +48] is used. This range is used to be
considered the one with the best tradeoff between quality
and computational cost. Considering the range [-48,
+48], the GRS algorithm achieves a PSNR gain of 2.07
dB in comparison to the
[-8, +8] range. The number of CCBs presents an increase
of 12%.

4. COMPARATIVE RESULTS

The GRS algorithm was compared to some well know
ME algorithms: Full Search (FS), Diamond Search (DS),
Three Step Search (TSS) [6] and Four Step Search (FSS)
[7]. Table 3 presents the average PSNR, number of
compared candidate blocks (CCBs) by each algorithm,
considering the search range of [-48, +48]. The GRS
algorithm can improve the quality results obtained by the
other evaluated fast algorithms. The GRS algorithm
achieves a quality gain of 0.72dB in relation to DS
algorithm. Compared to FSS, the gain is about 1.34 dB,
and 1.8 dB in comparison to TSS algorithm. This quality
gain is related to the efficiency to avoid local minima falls
of the GRS algorithms, especially in high resolution
videos.

Analyzing the computational cost, the GRS algorithm can
reduce about 200 times the number of CCBs, compared to
FS algorithm. However, compared to the other fast
algorithms, the GRS algorithm presents an increase in the
number of CCBs. The GRS algorithm presents two times
more CCBs than DS algorithm. When compared to FSS,
the number of CCBs grows about 26%, and 68% in
relation to TSS algorithm.

Table 3 – Comparison among GRS, FS, DS, FSS and TSS
algorithms.

Algorithm PSNR (dB) # CCBs (x106)

FS 35.89 14662.60

GRS 33.74 73.16

DS 33.02 48.07

FSS 32.40 58.03

TSS 30.94 43.51

Even presenting higher number of CCBs than the other
fast algorithms, the GRS algorithm achieves better quality
than all other algorithms and it can reach a similar or
better processing rate, since both steps of the GRS
algorithm can be done in parallel (there are no data
dependences between these steps).

5. CONCLUSIONS

This paper presented a new motion estimation algorithm
called Galaxy Random Search (GRS). This algorithm
uses a random search as strategy to avoid local minima
falls. GRS also explores two important characteristics in
the motion estimation process: (1) the exploration of the
central region of the search window since this exploration
helps to achieve good results for low motion activity
videos, where good candidate blocks are frequently found
close to the center; and (2) the use of a final iterative
refinement, giving the GRS algorithms the possibility to
converge to better similarity areas.

The GRS algorithm was evaluated with ten HD 1080p
video sequences. The number of random blocks and the
size of search area used by the GRS algorithm were
explored. The search range with the best tradeoff between
quality results and computational cost is [-48, +48] pixels.
The GRS algorithm presented a better result in terms of
quality, among all compared fast algorithms. The PSNR
gains compared to the DS algorithm is about 0.72 dB.
The number of CCBs of the GRS algorithms is higher
than all other fast algorithms, but it is 200 times lower
than the CCBs of FS. However, the processing rate of the
GRS algorithm can be equal or even superior to those
algorithms, due to the possibility of parallelization of its
two steps, since there are no data dependences between
then.

6. REFERENCES

[1] GONZALES, R, WOODS, R, 2004. Digital
Image Processing using MATLAB, Prentice Hall, Upper
Saddle River, NJ, 2004.

[2] PURI, A. et al. Video Coding Using the
H.264/MPEG-4 AVC Compression Standard. Elsevier
Signal Processing: Image Communication, [S.l.], n. 19,
p.793–849, 2004.

[3] RICHARDSON, I. H.264 and MPEG-4 Video
Compression : Video Coding for Next-Generation
Multimedia. Chichester: John Wiley and Sons, 2003.

[4] Zhu, S., MA, K., A New Diamond Search
Algorithm for Fast Block-Matching Motion Estimation.
In: IEEE Transactions on Image Processing, Vol. 9, No.
2, 2000, pp. 287-290.

[5] Xiph.org: Test media, available at
<http://media.xiph.org/video/derf/>, May, 2011.

[6] Jing, X., CHAU, L, An efficient three-step
search algorithm for Block motion estimation. IEEE
Transactions on Multimedia, [S.l.], Vol. 6, No. 3, 2004,
pp. 435-438.

[7] Tasdizen, O., et al., Dynamically Variable Step
Search Motion Estimation Algorithm and a Dynamically
Reconfigurable Hardware for Its Implementation. IEEE
Transactions on Consumer Electronics, Vol. 55, No. 3,
2009, pp. 1645-1653.

