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ABSTRACT 

 
The efficiency of motion estimation is directly related 

to the used search algorithm. In this paper, a new fast 
motion estimation (ME) algorithm is presented. This 
algorithm is called Galaxy Random Search (GRS) and it 
uses random search as strategy to avoid local minima falls 
in high definition videos, with a good tradeoff between 
quality and computational cost. The GRS algorithm has 
basically two steps, the first one is the evaluation of the 
central region of the search area, and the second one is 
the random evaluation. These two steps can be easily 
paralyzed. Thus, it is an interesting alternative for multi-
core or hardware implementations of video codecs. The 
developed algorithm was applied to ten HD 1080p video 
sequences, and the average quality results was superior to 
other fast ME algorithms. Compared to full search (FS) 
algorithm, the GRS can reduce the number of compared 
candidate blocks in more than 200 times. 

 
1. INTRODUCTION 

 
Motion estimation (ME) is the most important stage of 
current videos encoders. This step represents 80% of the 
total computational complexity of current video coders 
[1]. On the other hand, ME is where the video coder 
achieves the biggest coding gains. The ME aims to 
identify and to reduce the temporal redundancy between 
neighbor frames. 

The performance of motion estimation is directly 
connected to the used search algorithm. The algorithms 
are divided in two classes: optimum and sub-optimum 
(fast) algorithms. The Full Search Algorithm (FS) [2] is 
the only one which represents the optimum quality result, 
since it evaluates all the candidate blocks in a search 
range. However, its computational cost is extremely high. 
The sub-optimum algorithms use some heuristics to speed 
up the search convergence. The use of these heuristics 
makes possible a large reduction in the number of 
compared candidate blocks (CCB), compared to FS. 
However, these heuristics turns fast algorithms  
susceptible to local minima falls. Thus, when the local 
minimum is not found, the quality of motion estimation 
may suffer great losses in relation to the optimum result. 
Though, current search algorithms aim to ally low cost in 
computational complexity and high quality. 

In this paper, a new fast motion estimation algorithm, 
called Galaxy Random Search (GRS) is presented. This 
algorithm uses a random search of some candidate blocks 
in the search area as a strategy to avoid local minima 

falls. The GRS also explores important characteristics in 
the motion estimation such as locality (exploring the 
central region in the search area) and also iterative 
refinement (providing the convergence to more similar 
region). 

The paper is organized as follow: the motion estimation is 
explained in section 2. In section 3 is presented the GRS 
algorithm. In this section, the quality results and 
computational cost of the GRS algorithm are also 
evaluated. The comparisons with other algorithms from 
literature are shown in section 4. In section 5 the 
conclusion are presented.  

 
2. MOTION ESTIMATION 

 
The video compression is based on the elimination of 
redundant data. The ME is responsible to find a 
correlation between frames, mapping the temporal 
redundancy in motion vectors. These vectors indicate the 
spatial displacement of a block in the current frame, in 
relation with a reference frame. For each block of the 
current frame a motion vector is generated, indicating the 
best matching position in the search area from the 
reference frame. The ME algorithm defines how the 
search for the best matching is done. The computational 
cost and quality results of the ME depends on directly of 
the ME algorithm efficiency.  There are several similarity 
metrics to compare the block from the current frame and 
the candidate block in the search area. In this paper, the 
Sum of Absolute Differences (SAD) [3] is used. 

The ME algorithm should have a good tradeoff between 
computational cost and quality, and this is not a simple 
task. The efforts to developing new ME algorithms are 
being a relevant theme to scientific community nowadays. 

 
3. THE GRS ALGORITHM 

 
The motion estimation aims to find the temporal 
redundancies in digital videos, reducing the volume of 
information, with small, or even imperceptible, losses in 
visual quality.  

The ME algorithms should be fast and presents low 
computational complexity. The Galaxy Random Search 
algorithm (GRS) uses the randomness as way to avoid 
local minima falls. The random search of candidate 
blocks in the search area is a strategy to transpose SAD 
peaks, which is an insurmountable barrier only with a 
traditional iterative refinement. However, the random 



search applied in an isolate way does not consider several 
important characteristics of motion estimation. The GRS 
algorithm does an iterative search in the central region of 
the search window, which guarantees good results when 
the video presents low motion activity, where good 
vectors are found next to the center region. 

Figure 1 presents a flowchart of GRS algorithm. In this 
flowchart, both steps are made sequentially. However, 
they can be made in parallel, since there are no data 
dependences between them. That way, a hardware 
implementation can explore this characteristic to increase 
the global performance of the video encoder.  
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Figure 1 - Flowchart of GRS algorithm 

In the first step the algorithm explores the central region 
of the search window. Candidate blocks from the center 
of the search window tend to present good results of 
similarity. It happens, because considering the current 
block, the candidate block located in the same spatial 
position of the reference frame, tends to represent the 
same frame region. The GRS algorithm explores the 
central block, and its four neighbors as well. The SAD 
calculation for these blocks is done and if the lowest SAD 
is found at the center, the search is finished. When the 
lowest SAD is found in one of the four neighbors, an 
iterative refinement is started, considering the lowest 
SAD position as the new center, and evaluating its three 
neighbors. This iterative refinement is repeated until the 
lowest SAD is found at the center. The iterative 
refinement gives the GRS algorithms the possibility to 
converge to regions which present smaller SAD in the 
search window. 

The refinement used in the GRS is the same refinement 
used in the final step of Diamond Search (DS) algorithm 
[4], called Small Diamond Search Pattern (SDSP) [4]. 
Nevertheless, this approach, used in an isolate way, 
presents great susceptibility to local minima falls. 

In the second step, the GRS algorithm evaluates N 
random candidate blocks in the search window. This stage 
uses a random function to choose the N candidate blocks. 

This strategy aims to increase the probability of avoiding 
local minima falls. The N candidate blocks are evaluated, 
and the one with the lowest SAD is chosen. This region is 
explored by a final iterative refinement which tries to 
identify blocks with fewer residues. This refinement is 
identical to that one applied in the center, in the first step.  

Finally, a comparison is made between the best blocks 
from the first and second steps. From those, it is selected 
the one which presents the best similarity, and the motion 
vector is generated for this candidate block.  

Figure 2 presents a search example of the GRS algorithm, 
with N=6. In this figure it is possible to observe both 
steps presented in this algorithm. 
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Figure 2 – The GRS algorithm with N=6. 

In the first step, the GRS does the evaluation in the center 
of the search window, indicating by the blocks “c” in 
Figure 2, highlighted in orange. The central block and 
their neighbors (blocks “c0” in Figure 2) are compared. 
The iteration begins due to the fact that the right neighbor 
presents the lowest SAD. The next three neighbors 
(blocks c1 in Figure 2) are evaluated, and the process 
stops because the center presents the lowest SAD result. 
Therefore, the block indentified with “C” is the best block 
obtained from the first step.  

In the second step, the GRS algorithm evaluates N 
random candidate blocks (N=6 in this example), marked 
with “a” in Figure 2, and highlighted in green. The 
candidate block identified with “A” in Figure 2 is the 
block that presented the smaller SAD among the six 
candidate blocks which were evaluated. This block is 
used as center for the final refinement. This final 
refinement is highlighted in blue in Figure 2. In the first 
refinement stage, four neighbors are evaluated (blocks 
“r 0” in Figure 2). The iterative process begins because the 
right neighbor (block “R0” in Figure 2) has the lowest 
SAD result. Therefore, block “R0” becomes the new 
center and the algorithm iterates with the evaluation of 
their three neighbors (blocks “r1” in figure 2). Again, the 
best result was also found in right neighbor. In the second 
iteration, after comparing the center and their neighbors 
(blocks “r2”in Figure 2), the best result in the center is 
found (block “R” in Figure 2), and the searching ends. 
This central block is the best block found in the second 
step.  



The last stage of GRS is the identification of the best 
block among the central evaluation result (block “C”) and 
the final refinement (block “R”). The block with smaller 
SAD is the block that will be used, and for this block a 
motion vector will be generated.  

One characteristic from GRS algorithm is the possibility 
of the generation of different motion vectors for different 
executions in the same video. This occurs due to the 
random step, which can choose different candidate blocks 
to a new execution on the same search window. However, 
one evaluation from the average deviation showed that 
this variation is too small, about to be despised. 

3.1. Quality Evaluation 
The GRS algorithm was implemented in C language and 
evaluated in software. These evaluations were made to the 
first two hundred frames in ten 1080p videos samples [5]. 
The chosen videos were: blue_sky, man_in_car, 
pedestrian_area, rolling_tomatoes, rush_hour, 
sun_flower, tractor, traffic, station2 and riverbed.  

A determinant factor in GRS quality is the number of 
random candidate blocks (N). Greater values of N tend to 
generate better quality results, since a higher number of 
candidate blocks will be evaluated.  

Figure 3 presents a graphic with quality results from GRS 
algorithm, considering the variation of the N value  and 
the search window size. In this figure, the block size was 
16x16 pixels. The search area varies in the horizontal axis 
and the quality (PSNR) varies in the vertical axis. 
Analyzing the graphic, it is possible to realize that as the 
number of random candidate blocks increases, the quality 
is also increased, considering a specific search window. 
The quality increasing observed between curves is 
practically proportional. That way, considering only the 
quality results, the best result, for a specific search area, 
will be achieved from the biggest N value.  

 

Figure 3 – GRS quality evaluation for different search 
ranges and N values. 
 
The range defines how many pixels for each side of a 
current block belong to the search window. In the graphic 
presented in Figure 3 it is possible to observe that for a 
fixed N value, the quality increases according to the 

increasing of the search range. This happens because 
when the search area is increased, the algorithm has new 
regions in the frame to search better candidate blocks. 
However, the quality gains tend to stabilize for a range of 
[-48, +48] or higher. From ranges equal or higher than  
[-48, +48], the algorithm does not use the regions far 
from the center, especially by the iterative processes 
satisfying the stop condition before the end of the given 
search window.  

3.2. Computational Cost Evaluation 
The impacts, caused by the variation of the N values and 
the search window size can also be perceptible through 
computational cost evaluation. Table 1 shows the quality 
results and the computational cost for the GRS algorithm, 
considering the variation of the N value. The quality 
increase is measured according to the achieved PSNR and 
the computational cost is measured in number of 
compared candidate blocks (CCB).  

The results presented in Table 1 considers a search range 
of [-64, +64]. The difference in PSNR between the 
smallest and the greatest N value is 0.77 dB. The number 
of CCBs grows for higher N values. The increasing is 
about 6% among N=4, 8, 12 and 16. However, for higher 
N values the increasing is about 13%. The best tradeoff, 
between quality and computational complexity, is 
obtained for N =16. In this case, the quality gain upon N 
= 4 is about 0.5 dB, with an increasing in the number of 
CCBs of 34% (73.2x106 CCBs). 

Table 1 – Evaluation of the number of N influence in 
PSNR and CCBs 

N Value PSNR (dB) # CCBs (x106) 

4 33.26 52.80 
8 +0.25 +6.97 
12 +0.39 +13.73 
16 +0.50 +20.40 
24 +0.66 +33.63 
32 +0.77 +46.78 

 

Table 2 shows the average quality and computational 
costs results considering the search window range 
variation for N=16. The GRS algorithm presents a small 
increasing in the number of candidate blocks with the 
growing of the search window range. However, as cited 
before, the quality gains tend to stabilizes for a search 
range of [-48, +48]. The PSNR gain is only 0.01dB 
comparing the ranges [-48, +48] and [-64, +64]. 

Table 2 – Evaluation of the search range influence in 
PSNR and CCBs  

Search Range  PSNR (dB) # CCBs (x106) 
8 31.84 76.87 
16 +1.35 +6.51 
24 +1.77 +8.45 
32 +1.96 +9.15 
48 +2.07 +9.51 
64 +2.08 +9.56 

N 



The use of a higher search window implies in an 
additional cost of memory. In this case, the increase in the 
range from, 48 to 64 pixels does not bring a significant 
improving in quality. The surplus charge to memory is 
avoided and the quality loss are practically null when a 
range of [-48, +48] is used. This range is used to be 
considered the one with the best tradeoff between quality 
and computational cost.  Considering the range [-48, 
+48], the GRS algorithm achieves a PSNR gain of 2.07 
dB in comparison to the  
[-8, +8] range. The number of CCBs presents an increase 
of 12%. 

 
4. COMPARATIVE RESULTS 

 
The GRS algorithm was compared to some well know 
ME algorithms: Full Search (FS), Diamond Search (DS), 
Three Step Search (TSS) [6] and Four Step Search (FSS) 
[7]. Table 3 presents the average PSNR, number of 
compared candidate blocks (CCBs) by each algorithm, 
considering the search range of [-48, +48]. The GRS 
algorithm can improve the quality results obtained by the 
other evaluated fast algorithms. The GRS algorithm 
achieves a quality gain of 0.72dB in relation to DS 
algorithm. Compared to FSS, the gain is about 1.34 dB, 
and 1.8 dB in comparison to TSS algorithm. This quality 
gain is related to the efficiency to avoid local minima falls 
of the GRS algorithms, especially in high resolution 
videos. 

Analyzing the computational cost, the GRS algorithm can 
reduce about 200 times the number of CCBs, compared to 
FS algorithm. However, compared to the other fast 
algorithms, the GRS algorithm presents an increase in the 
number of CCBs. The GRS algorithm presents two times 
more CCBs than DS algorithm. When compared to FSS, 
the number of CCBs grows about 26%, and 68% in 
relation to TSS algorithm.  

Table 3 – Comparison among GRS, FS, DS, FSS and TSS 
algorithms. 

Algorithm PSNR (dB) # CCBs (x106) 

FS 35.89 14662.60 

GRS 33.74 73.16 

DS 33.02 48.07 

FSS 32.40 58.03 

TSS 30.94 43.51 
 
Even presenting higher number of CCBs than the other 
fast algorithms, the GRS algorithm achieves better quality 
than all other algorithms and it can reach a similar or 
better processing rate, since both steps of the GRS 
algorithm can be done in parallel (there are no data 
dependences between these steps).  

 

 

5. CONCLUSIONS 
 

This paper presented a new motion estimation algorithm 
called Galaxy Random Search (GRS). This algorithm 
uses a random search as strategy to avoid local minima 
falls. GRS also explores two important characteristics in 
the motion estimation process: (1) the exploration of the 
central region of the search window since this exploration 
helps to achieve good results for low motion activity 
videos, where good candidate blocks are frequently found 
close to the center; and (2) the use of a final iterative 
refinement, giving the GRS algorithms the possibility to 
converge to better similarity areas.  

The GRS algorithm was evaluated with ten HD 1080p 
video sequences. The number of random blocks and the 
size of search area used by the GRS algorithm were 
explored. The search range with the best tradeoff between 
quality results and computational cost is [-48, +48] pixels. 
The GRS algorithm presented a better result in terms of 
quality, among all compared fast algorithms. The PSNR 
gains compared to the DS algorithm is about 0.72 dB. 
The number of CCBs of the GRS algorithms is higher 
than all other fast algorithms, but it is 200 times lower 
than the CCBs of FS. However, the processing rate of the 
GRS algorithm can be equal or even superior to those 
algorithms, due to the possibility of parallelization of its 
two steps, since there are no data dependences between 
then.  
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