
ACCELERATING THE TEST AND VERIFICATION OF OPEN CORE

MICROCONTROLLERS AND OTHER IPS WITH AN ETHERNET INTERFACE

Sibilla B. L. França, Christophe F. L. Bricout, Ricardo P. Jasinski, Volnei A. Pedroni

UTFPR, Dept. of Electronics Engineering

Curitiba- PR, Brazil

ABSTRACT

Test and verification are a crucial stage in the
development of an IP (intellectual property) core. Using
industry standard techniques, an extensive series of tests
are performed, looking for possible failures in the design.
This paper describes an approach that can be used to
accelerate the test and verification of IP cores such as
microcontrollers, coprocessors, communication
controllers and others, using a standard Ethernet interface.
Instead of running an extensive set of testbenches on a
simulator, a test environment is set up in which a large
part of the functional verification is replaced by actual
execution in hardware. A case study is presented in which
the presented method is applied in the verification of an
open source 8-bit microcontroller IP core, drastically
reducing total verification time. To a large extent, the
proposed method is technology and operating system
independent. The proposed method is supplementary to
the conventional methods based on testbenches, enabling
the designer to choose between both approaches for each
test case.

1. INTRODUCTION

Functional verification is a fundamental phase of

circuit design, in which all functionalities should be
exercised in order to guarantee operation according to the
original specifications. It is usually a complex and time
demanding task, frequently consuming more than half of
the computer and human resources dedicated to this kind
of project [1]-[2]. If performed late in the design process
and the resulting implementation does not match the
specified features, enormous commercial losses can occur
[3].

The verification process usually includes several
distinct techniques. Commonly, typical use cases and
corner case tests are manually chosen, implemented and
applied. Functional and timing simulations are performed,
usually as part of an automated test suite. After the
hardware is considered ready, extensive high-level (i.e.,
application) tests are executed. Additionally, when
suitable, pseudo-random stimuli can also be used [3].
Since most of these tests are usually performed via a
simulator, when the device under test (DUT) contains a
high number of circuit nodes, this operation can be highly
time consuming.

Two traditional approaches to circuit verification are
the “golden design” (or reference model) and self-

checking testbenches. In the golden design (Fig. 1)
approach (also called golden chip, of gold vectors), a
reference model is instantiated side by side with the DUT,
and the same set of input stimuli is applied to both units.
The resulting outputs are then compared, and should be
equal within the expected tolerance.

Figure 1. Golden design approach.

If self-checking testbenches are also used (Fig. 2), as

in [4]-[7], the DUT is usually instantiated inside the
testbench top-level entity. The testbench itself will then
generate the appropriate stimuli, and compare the DUT
outputs with known results, or even with a different
implementation of the same algorithm.

Figure 2. A self-checking testbench.

In both cases, if a comprehensive test coverage must

be achieved, the corresponding simulations will be very
time consuming.

The approach proposed in this paper allows the
designer to replace part (or most) of these simulations
with actual execution of the test cases in the DUT,
implemented in an FPGA. A case study is included in the
paper for the verification of an 8-bit open source
microcontroller (an Atmel AVR clone), where simulation
runs requiring hours to be executed on a high-end PC
were replaced successfully with the actual execution of
test code in the DUT, reducing the average time to run a
test case to less than a second. This time gain allowed the
development of more extensive test sets, improving the
effectiveness of the verification process.

2. PROPOSED METHOD

Many IP cores operate on data available in RAM,

either on-chip or off-chip. Examples include
microprocessors, which execute instructions stored in a
program memory; video controllers, in which pixel data is
stored in a dedicated memory section; or many other
DMA (direct memory access) capable peripherals.

Traditionally, the initial contents of such memories are
specified in simulations via memory initialization files.
These memories are then connected to the DUT by
instantiation inside a top-level entity, which will then
coordinate the process of feeding data to the IP core
being tested. However, in a complex architecture, the
number of clock cycles needed to execute even a simple
application can be prohibitively high, and a test case may
take several hours to complete.

The proposed approach (Fig. 3) consists in the
following steps:

1) Synthesize the DUT to an FPGA, along with:
a) an Ethernet interface (more specifically, the

MAC – media access controller – stage);
b) an on-chip memory;
c) an interface block, used to initialize the

Ethernet MAC and control the test sequence.
2) Generate memory initialization files containing the

test programs to be executed on the DUT.
3) Use a PC tool to coordinate the process of

transmitting the data to the on-chip memory, starting the
DUT, and reading back the outputs of the process.

4) The PC is then used to check the results against the
golden vectors, and restarts the process until all tests are
run.

Figure 3. Test setup for the proposed method.

As can be seen, the only requirements are a set of

software tools (which are all freely available, either from
open sources or provided by FPGA vendors) and a board
containing an FPGA chip and a physical Ethernet
interface. This setup can be run in practically any
operating system supported by the FPGA vendor, and
integrates easily with the standard tools composing the
original FPGA design flow.

It is worth mentioning that most current FPGA
development suites support real-time updating and read
back of on-chip memories, which can aid in the initial
setup and debugging. This eliminates the need to update
the entire FPGA configuration whenever new test data
must be sent for evaluation.

3. STUDY CASE: MICROCONTROLLER

The proposed technique was used in the verification
of an open core microcontroller IP (an Atmel AVR
clone), which was being considered for utilization in a
real industrial application. The selected microcontroller
IP core was available via the OpenCores Project website
(opencores.org), as a synthesizable description in VHDL
language. However, like most non-commercial cores, it
had never undergone formal verification or rigorous
performance tests.

3.1. Microcontroller Selection

The work described in this paper was part of a larger,
industry sponsored project, which also included the
selection of an adequate 8-bit microcontroller under the
following requirements:

i) The project should be an implementation of an
existing, commercial product.

ii) Availability of documentation, describing the
implemented functions and design limitations.

iii) Availability of testbenches.
iv) Support tools for software development.
v) Preferably described in VHDL.
vi) It should be a design with recent updates.

A total of thirty three microcontroller designs were

surveyed and evaluated. However, due to the ample
requirements, no one could be found that satisfied all of
the original goals. Especially hard to find were designs
with a proper documentation, which reinforced the need
for a commercial counterpart with documentation
available from other sources.

Another important requirement is the availability of
testbenches, which help understand the core’s internal
working, operations sequencing and the values of control
signal and buses. Most of the surveyed projects provided
some sort of test data demonstrating basic design
functions; however, few of them were actual testbenches
implemented in an HDL. The larger part included only
software tests in Assembly language, performing tasks
such as printing messages on a serial port, arithmetic
calculations, or reading and writing to a memory section.

Among all surveyed candidates, four processor
models were selected, with one or more implementations
available for each one. The selected microcontrollers
included the Intel 8051, Zilog Z80, Motorola 6805, and
Atmel AVR.

A more detailed examination of these preselected
cores was then performed, more specifically, studying the
available documentation and code, and running brief
operational tests. Eventually, the project named AVR
Core was chosen. This project is recent, described in
VHDL, consumes few logic resources in the FPGA (less
than 2,000 LUTs and 800 registers), can use freely
available C and Assembly compilers, and also featured a
software tool to convert the generated binary code into

VHDL, which is useful for debugging both the
microcontroller and the initial test setup. On the
downside, no testbenches were available.

3.2. Initial Tests of the AVR Core

The selected microcontroller is a RISC CPU, code-
compatible with the Atmel ATmega103. Its features
include 32 × 8-bit general purpose registers, up to 128 kB
of program and 64 kB of data memory, a UART, two 8-
bit timer/counters, and two parallel ports. The core also
supports the AVR port of the uC/OS-II real-time
operating system kernel.

After correctly synthesizing the core to an FPGA

development board (containing an Altera Cyclone II
EP2C35F672C6N device), an initial test setup was
prepared (Fig. 4), in order to confirm its basic working.
At this time, the Ethernet interface was not used; instead,
the generated binary file was converted into a VHDL file
with a proper tool, and synthesized along with the
processor code.

Obviously, this approach in not adequate for the
execution of a large number of test cases, since the FPGA
programming bitstream would have to be regenerated and
reprogrammed for each test case. Nevertheless, the core
was tested with several ASM and C programs, until its
basic operation was found to be satisfactory.

3.3. Speeding Up Tests with the Proposed Method

The initial test setup presented in Section III.B clearly
has many disadvantages. First, the entire FPGA design
must be recompiled; depending on the vendor tools suite,
this can require all source files in the design to be
reanalyzed and resynthesized. Second, it involves the

generation of VHDL code from a software object file,
unnecessarily adding complexity to what should be a
software testing process. Third, the FPGA must be
reprogrammed, and all on-chip peripherals and other
circuits must be reinitialized. Fourth, it may be extremely
hard to automate in practice, due to the difficulties of
integrating a large number of software tools from
different vendors.

The tests using the proposed method were executed in
a custom FPGA board, which included a Cyclone II
FPGA EP2C8F256C8 and an Ethernet PHY 78Q2123
chip. The Ethernet-accelerated test setup is shown in Fig.
5. The process begins with the initial configuration of the
Ethernet MAC IP core. Since the DUT in this case was a
microcontroller, its programmability has been exploited
in order to ease this initialization process; the startup code
is stored in its ROM, which is automatically executed
when the processor is run. After that, the processor simply
awaits the arrival of new test data.

When a new test program is received via the Ethernet
interface, the Test Control Unit (TCU) senses it and starts
the execution. Fig. 6 shows an Ethernet frame being sent
to the FPGA and captured on the wire using a packet
sniffing tool.

Figure 6. Frame sent to a test circuit.

In this particular implementation, the maximum test

program length is equal to the maximum frame length
enabled by the Ethernet controller, i.e., approximately
1,500 bytes. Naturally, this could be increased with the
implementation of additional control logic, but this
amount was considered enough to run all intended test
cases.

At the end of every test program, selected data
(typically, operation results) are stored back in data
memory, and the processor indicates the end of a test run
through a data port. The TCU then transmits the resulting
test data to the PC, where it is evaluated. These results are
checked and logged to a test output file, and a new test
run is then started.

Data

Address

Text Editor

file.c or

file.asm

AVR_GCC

Object file

Converter

PROM.VHD

 ROM

AVR Core

(DUT)

Figure 4. Initial test setup (without the proposed method).

Figure 5. Proposed method applied to AVR Core.

Since we were interested in proving the correctness of
the processor implementation, test programs were created
that exercised most instructions from its instruction set.

4. RESULTS

Currently, more than 80% of the documented

instructions were already tested, and all of the available
addressing modes. All of the arithmetic, logic, and branch
instructions were exercised, and matched the expected
results in all cases.

The proposed method and the presented test setup
enabled the execution of all tests sequentially, which
would be impossible via simulation due to memory and
processing limitations. When unexpected results were
found, the test could be quickly re-run in real time, which
was unthinkable with the simulation approach. All tests
were performed at a fixed speed of 50 MHz.

In order to evaluate the performance gain provided by
the proposed method, a test run with a length of 5×106
clock cycles was executed in Mentor Graphics Modelsim
simulator, which required 2,262 seconds (37.7 minutes).
When executed in real-time in the FPGA, using the
proposed method, this same test is run in only 100 ms (for
a clock frequency of 50 MHz). These results indicate that,
in this case, the proposed method is 22,620 times faster
than a simulation of the same test code.

Finally, some faults were inserted in the
microcontroller to demonstrate that the proposed method
is capable of identifying errors in design. By examining
test sequence outputs, the failing tests were identified and
provided enough information to locate the fault in the
original circuit.

Figs. 7 and 8 demonstrate a test sequence in which a
register is cleared and then incremented 15 times; in the
end, its value is compared with a hexadecimal value of
$0F. At the same time, the count value is replicated at one
of the microcontroller IO ports (Port B, in this case) and
stored in memory, in order to be evaluated by the PC
coordinating the tests. Fig. 8 shows the test signals
captured with a logic analyzer; the count value can be
seen in port B[3..0]. The test code presented in Fig. 7 is
the same that was shown in Fig. 6 on the Ethernet wire.

Figure 7. Assembly code for the sample test sequence.

Figure 8. Test results captured with a logic analyzer.

6. CONCLUSIONS

The approach presented in this paper allows a system

designer to choose between the traditional simulation
approach and actual hardware execution for each test
case, in a larger test sequence. A case study was
presented, in which the proposed method was applied to
the verification of an 8-bit open core microcontroller. The
new test setup provided speed gains of up to 22,620 times
compared to the simulation-only approach. This time
savings allowed the development of more extensive test
sets, improving the effectiveness of the verification
process.
Even though the DUT programmability has been
exploited to ease the initialization process, this is not a
strict requirement, and the same approach can be applied
to simpler IP cores like peripherals and coprocessors. To
a large extent, the proposed method is technology and
operating system independent.

The simple requirements of the proposed approach (an
FPGA with modest on-chip memory, and an Ethernet
interface) enable its adoption in virtually any
development system.

10. REFERENCES

[1] A. Meyer, Principles of Functional Verification, Newnes,
2003.

[2] J. Bergeron, Functional Verification of HDL models,
Springer, 2nd ed., 2002.

[3] L. Fournier, Y. Arbetman, M. Levinger, “Functional
verification methodology for microprocessors using the genesys
test-program generator,” Proc. Design, Automation and Test in
Europe Conference, Mar. 1999, pp. 434-441.

[4] W. S. Encinas Jr, C. A. Dueñas, “Functional verification in
8-bit microcontrollers: a case study,” Symp. Microeletronics
Tecnology and Devices, 2001.

[5] I. Rancea, V. Sgarciu, “Functional verification of digital
circuits using a software system,” IEEE Int. Conf. on
Automation, Quality and Testing, Robotics, May 2008, pp. 152-
157.

[6] Myoung-Keun,You, Yong-Jin Oh, Gi-Yong Song,
“Implementation of a hardware functional verification system
using SystemC infrastructure,” IEEE Region 10 Conference,
Jan. 2009, pp. 1-5.

[7] K. R. G. Silva, E. U. K. Melcher, G. C. S. Araújo, V. A.
Pimenta, “An automatic testbench generation tool for a
SystemC functional verification methodology,” 17th Symp.
Integrated Circuits and Systems Design, Apr. 2010, pp. 66-70.

.org $0008
000008 ef3f ser TEMP
000009 bb3a out DDRA, TEMP
00000a bb37 out DDRB, TEMP
00000b e0a0 ldi r26, $00
00000c e1b0 ldi r27, $10
00000d e04f ldi r20, $0F
00000e e020 ldi r18, $00
00000f 3040 loop: cpi r20, $00
000010 f031 breq check
000011 bb28 out PORTB, r18
000012 932d st X+, r18
000013 954a dec r20
000014 9523 inc r18
000015 940c jmp loop
000016 000f
000017 302f check: cpi r18, $0F
000018 f011 breq ok
000019 e430 ldi r19, $40
00001A bb3b out PORTA, r19
00001B e230 ok: ldi r19,$20
00001C bb3b out PORTA, r19

Int
PortB[3]
PortB[2]
PortB[1]
PortB[0]
PortA[5]
PortA[6]

