
DESIGNING AN IP-CORE FOR EDGE DETECTION IN MONOCHROME IMAGES

USING THE SOBEL OPERATOR

Jody Maick Araujo de Matos, Fladmy Alves de Souza, Anfranserai Morais Dias

State University of Feira de Santana

ABSTRACT

The integrated circuit designs are reaching high levels

of complexity. Due to the great importance of these

devices nowadays they are performing increasingly

complex functions. In this case the use of methodologies

and tools in development process such devices are

essential, as well as projecting Systems-on-Chip (SoC)

with reusable IP-Cores. This paper describes the

designing of a Soft IP-Core for edge detection in

monochrome images using the Sobel Operator, applying

the ipPROCESS methodology, a Brazilian initiative in

order to create a standard and enhance the development

of integrated circuit design in the country.

INTRODUCTION

Nowadays, electronic devices are more complex,

adding more information, communications and

entertainment, reaching more consumers. This market

growth is due to decreased production costs [1].

However, the increasing complexity of Integrated

Circuits designs and the speed at which products should

hit the market, that resulted in the creation of tools and

methodologies to be applied in development projects.

One of the methods for IC's development are based on

pre-designed and reusable components, called IP-cores

(Intellectual Property - IP) [2, 3, 4].

In last few years, the federal government is

encouraging the development of IC's, among the various

initiatives highlight the Brazil-IP project. One of the

many results produced was the development process for

Soft IP-core designs, called ipPROCESS. Your goal is to

ensure the production of high quality IP-cores [5].

This paper presents an IP-core development which

performs edge detection in monochrome images using the

Sobel operator [6]. Tools and methodologies specified by

ipPROCESS were applied in the project. Although, the

IP-core was embedded in an FPGA connected to an

analog camera.

The approach taken in this paper surrounds a brief

explanation of the ipPROCESS, describing their main

characteristics and development methodology. The

section 4 presents a description of the conception,

architecture and functional verification stages for this

project. Section 5 shows the prototype used in the tests

and the results achieved by the project. Finally, there is a

general review of the project and future works.

IPPROCESS

The design of an IP-core requires a high-added

knowledge and involves different working groups, which

perform the specification, implementation using a

hardware description language (HDL), simulation,

functional verification, synthesis, prototyping and

protection of intellectual property. All these aspects of the

project requires many skills in different areas, as well as

mechanisms to support the teamwork [4,7].

The development of an IP-core should allow its

interaction with other components to form a System-on-

Chip (SoC). Therefore, it's essential that each component

has the smallest faults as possible [4, 5, 7].

The ipPROCESS is a process of IP-cores

development with FPGA prototyping which provides a

disciplined approach, assigning tasks and responsibilities

within the context of an organized development. The goal

is to ensure the production of high quality modules that

meet the needs of its end users, while meeting the

demands of a competitive design market [5].

The ipPROCESS was based on the Rational Unified

Process (RUP), a software engineering process that

provides an approach to assign tasks and responsibilities,

where a "discipline" is a related collection works. It also

surrounds a set of practices, important in the context of

reuse and detection errors, such as requirements

management and changes in visual modeling with UML,

use of component architectures and constant quality

check [1, 4, 7].

Some techniques used in eXtreme Programing (XP)

were placed in ipPROCESS. His emphasis on teamwork,

with managers, developers and customers as part of a

dedicated team to product’s quality and its focus on

automation, validation and use of a regression test suite,

allow the ipPROCESS application a relatively simple set

of rules and practices related to planning, design, coding

and testing [8].

The phases of ipPROCESS are shown in Figure 1.

The first phase is the Conception. At this point, the goal

is to utilize the customer understanding needs to

recognize the functional and nonfunctional requirements.

At this step of the process, the scope must be defined.

In the Architecture phase is used the survey

requirements made in the previous phase to design the

structure of the IP-core. Each requirement is mapped to

one or more components then are created communication

protocols between them. Still in the Architecture, plans

for verifying and integration between the components

must be documented.

Figure 1 – Phases of ipPROCESS [5].

The third phase is called RTL Design. In this step the

conceptions of design, defined previously, are used for

deployment with hardware description languages (HDL).

The coding is done based on the strategies for verification

and integration of modules documented.

Finally, the last phase is the Physical Prototy

this stage, the IP-core physical design should be done. All

components must be synthesized and tested, information

about the FPGA used should be documented, and the

steps needed for the prototype have to be reproduced.

METHODOLOGY

In this paper we applied the methodology of

ipPROCESS and some artifacts were produced according

to the discipline process. The making of these products is

dynamic, with each IP-Core update the documents are

reviewed and refined.

The ipPROCESS workflow must meet the sta

characteristics of development. Figure 2 illustrates how

this flow should occur. The phases of the process can

easily be identified in the sequence in which courses

should be conducted.

Figure 2 – ipPROCESS Workflow [3].

DEVELOPMENT

In this section, the development process will be

briefly described using the ipPROCESS's phases for

structure it. Because of the reduced space in this paper,

Phases of ipPROCESS [5].

The third phase is called RTL Design. In this step the

conceptions of design, defined previously, are used for

deployment with hardware description languages (HDL).

The coding is done based on the strategies for verification

and integration of modules documented.

Finally, the last phase is the Physical Prototyping. At

core physical design should be done. All

components must be synthesized and tested, information

about the FPGA used should be documented, and the

steps needed for the prototype have to be reproduced.

we applied the methodology of

ipPROCESS and some artifacts were produced according

to the discipline process. The making of these products is

Core update the documents are

The ipPROCESS workflow must meet the stages

characteristics of development. Figure 2 illustrates how

this flow should occur. The phases of the process can

easily be identified in the sequence in which courses

ipPROCESS Workflow [3].

n, the development process will be

briefly described using the ipPROCESS's phases for

structure it. Because of the reduced space in this paper,

this description phases haven't the due attention, but

detailed explanations can be founded in the referenced

works [3, 4, 10].

Conception

Early in the project, three documents of the

Requirements discipline were produced. The first was the

glossary, it's used to identify terms and expressions and to

establish a unique understanding of the project among its

members.

Another artifact was the Vision Document, which

provides an initial view of the IP

characteristics and constraints, besides identifying which

users should be involved in each process stage.

Architecture

This step is the conversion of the ideas into an

architectural model. During this phase are identified the

architecture components, once considered the

requirements of IP-core. The elements are modeled in

class diagrams and use cases. In some cases it is also

possible to describe the processes through finite state

machines (state diagrams) [2]. The Figure 3 presents a

Class Diagram, produced at this step.

Figure 3 – Class Diagram.

The Use Case model defines the actors involved, the

flow of primary and secondary events, special

requirements, preconditions and postconditions,

nonfunctional requirements and associated extension

points. The Figure 4 presents a vers

produced on the development process.

RTL Design and Physical Prototyping

In this step, the produced artifacts were the RTL

simulation model and the tests description for each

component implemented.

The RTL design was described in Verilog,

hardware description language. The project was

embedded in a kit DE2, which offers several hardware

resources such as SDRAM, a FPGA IC Altera Cyclone II

this description phases haven't the due attention, but

detailed explanations can be founded in the referenced

Early in the project, three documents of the

Requirements discipline were produced. The first was the

it's used to identify terms and expressions and to

establish a unique understanding of the project among its

Another artifact was the Vision Document, which

provides an initial view of the IP-Core scope, defining its

nts, besides identifying which

users should be involved in each process stage.

This step is the conversion of the ideas into an

architectural model. During this phase are identified the

architecture components, once considered the

core. The elements are modeled in

class diagrams and use cases. In some cases it is also

possible to describe the processes through finite state

machines (state diagrams) [2]. The Figure 3 presents a

Class Diagram, produced at this step.

Class Diagram.

The Use Case model defines the actors involved, the

flow of primary and secondary events, special

requirements, preconditions and postconditions,

nonfunctional requirements and associated extension

points. The Figure 4 presents a version of Use Case

produced on the development process.

RTL Design and Physical Prototyping

In this step, the produced artifacts were the RTL

simulation model and the tests description for each

The RTL design was described in Verilog, which is a

hardware description language. The project was

embedded in a kit DE2, which offers several hardware

resources such as SDRAM, a FPGA IC Altera Cyclone II

2C35, analog digital conversion module for the camera

input signal and VGA output module.

Figure 4 – Use Case Diagram.

The development was focused on the implementation

of the Sobel's operator [6]. In Figure 5 you can see the

overall system architecture, highlighting the region that

includes the CONTROL, CONVOLUTION and

BUFFER LINE modules, that are effectively developed,

the other blocks are provided by Terasic, that made the

kit and authorizes the use and modification for non

commercial applications.

Figure 5 – Overall System Architecture.

2C35, analog digital conversion module for the camera

Use Case Diagram.

The development was focused on the implementation

of the Sobel's operator [6]. In Figure 5 you can see the

overall system architecture, highlighting the region that

includes the CONTROL, CONVOLUTION and

hat are effectively developed,

the other blocks are provided by Terasic, that made the

kit and authorizes the use and modification for non-

Overall System Architecture.

The approach aims to decrease SDRAM memor

access. The Sobel operator uses a 3x3 mask to perform a

convolution of the image. This calculation is done

iteratively. Therefore, the CONVOLUTION block

processes only three lines of the image at every step. The

line immediately below, which will be the

calculated, it is loaded to the LINE BUFFER block in

parallel, Figure 6 illustrates this process.

Figure 6 – Design Strategy Illustration.

The CONTROL module controls the entire process of

defining what are the lines involved in the co

and what is the line being loaded into BUFFER LINE.

This entire process is done in parallel and synchronized

with the clock generated by the ITU

i.e., while the block is performing the convolution

calculation, the next line is stor

Finally, after the processed pixel is sent to the

module CONTROL VGA, which generate signals of

horizontal and vertical sync to be shown on a VGA

monitor.

Functional Verification

In the fourth stage, the RTL design is embedded in an

FPGA and quality IP-Core is evaluated and estimated to

validate the implementation.

called Functional Verification.

There are three types of functional verification that

can be applied: the static, dynamic, and hybrid. The static

(or formal) verification focuses on the code structure, like

case statements incomplete, assignments, if/else

inconsistent or missing signals on sensitivity list. The

formal verification can prove the absence of errors

through mathematical equations and v

properties.

The dynamic verification is coverage

checking how of the design functionalities was tested,

which can give a security of the completeness degree of

the verification process. The constrained

very used strategy in this type of verification, in which

the input signals are generated based on a probability

distribution function directed to the Design Under

Verification (DUV).

The hybrid verification combines the static to the

dynamic. The tactics used in this

verification using the Grey Box approach, which is a mix

The approach aims to decrease SDRAM memory

access. The Sobel operator uses a 3x3 mask to perform a

convolution of the image. This calculation is done

iteratively. Therefore, the CONVOLUTION block

processes only three lines of the image at every step. The

line immediately below, which will be the next line to be

calculated, it is loaded to the LINE BUFFER block in

parallel, Figure 6 illustrates this process.

Design Strategy Illustration.

The CONTROL module controls the entire process of

defining what are the lines involved in the convolution

and what is the line being loaded into BUFFER LINE.

This entire process is done in parallel and synchronized

with the clock generated by the ITU-R 656 DECODER,

i.e., while the block is performing the convolution

calculation, the next line is stored in BUFFER LINE.

Finally, after the processed pixel is sent to the

module CONTROL VGA, which generate signals of

horizontal and vertical sync to be shown on a VGA

In the fourth stage, the RTL design is embedded in an

Core is evaluated and estimated to

validate the implementation. This validation process is

called Functional Verification.

There are three types of functional verification that

can be applied: the static, dynamic, and hybrid. The static

(or formal) verification focuses on the code structure, like

case statements incomplete, assignments, if/else

inconsistent or missing signals on sensitivity list. The

formal verification can prove the absence of errors

through mathematical equations and verification of model

The dynamic verification is coverage-driven,

checking how of the design functionalities was tested,

which can give a security of the completeness degree of

the verification process. The constrained-random is a

ategy in this type of verification, in which

the input signals are generated based on a probability

distribution function directed to the Design Under

The hybrid verification combines the static to the

dynamic. The tactics used in this project is the hybrid

verification using the Grey Box approach, which is a mix

between the Black Box, where the verification process

sees the DUV as a function, deriving the outputs from the

inputs, and White Box, where the DUV variables and

internal signals are visible and can be accessed by the

verification environment.

The reference models were programmed in System

Verilog language, using the same documentation as

applied to the RTL design, thus producing similar

modules. The DUV could be tested in an iterative form,

where corrections were made in the project and tested

again until they reached satisfactory levels.

RESULTS

The designed IP-core was embedded in a kit of Terasic

DE2, connected to a mini-CCD camera-SH ¼ 0.1Lux, to

test its operation. Figure 7 shows the screen of a VGA

monitor with the result of Sobel filter. In the Figure 8 can

be viewed all the equipment up and running. The

processing is done in real time, because processing of

each pixel is accomplished in one clock cycle. In tests the

frame rate was around 60 frames per second, this number

is limited by the capacity of the camera and TV decoder

DECODER 7181B.

Figure 7 – Frames processed.

Figure 8 – Working System.

CONCLUSION AND FUTURE WORK

The use of ipPROCESS methodology provides an

important documentation, and a series of well defined

activities streamlines the design and decreases errors. The

implementation is facilitated, since the requirements are

well defined and the elaborate diagrams. The project can

be divided into a great team without causing problems at

the time of integration. The documentation produced

decreases the learning time of students who will continue

the project development. In addition, the results achieved

by RTL simulation model and the functional verification,

are in agreement with expectations.

This phase of the project is not finished yet. The

analog camera generates image noise, which will be

reduced by a pre-filter. It will also be made a qualitative

analysis of the resulting image, as well as a new

functional verification for IP-core developed.

The objective of this project aims to build a camera to

be used in a robot. In future work, the analog camera will

be replaced by a digital, the IP-core developed will be

used as an initial stage of the embedded vision system

that will result in the coordinates of objects in the

captured image.

REFERENCES

[1] H. Chang et al, Surviving the SoC Revolutions: a guide to

platform-based design, Kluwer Academic Press, 1999.

[2] M. Lima and others, “ipPROCESS: A Development Process

for Soft IP-core with Prototyping in FPGA”, Forum on

Specification & Design Language, Lausanne, Switzerland, pp.

1-13, 2005.

[3] M. Lima and others, “ipPROCESS: Using a Process to

Teach IP-core Development”, International Conference on

Microelectronic Systems, Anaheim, California, EUA, pp. 1-2,

2005.

[4] M. Keating and P. Bricaud, “Reuse Methodology Manual

for System-on-a-Chip Designs”, Kluwer Academic Publishers,

2002.

[5] Brazil-IP, Rede Brasileira de Centros de Concepção de

Sistemas Digitais e IP´s, URL: http://www.brazilip.org.br/.

Acesso em 26 de junho de 2011.

[6] R.D. Gonzales and R.E. Woods, Digital Image Processing,

Edgar Blücher, São Paulo, 2000.

[7] K.R.G. da Silva, “Uma Metodologia de Verificação

Funcional para Circuitos Digitais”, Master’s thesis, Campina

Grande: UFCG, 2007.

[8] D. Wells, “eXtreme Programming: A gentle introduction”,

URL: http://www.extremeprogramming.org/, Acesso em 26 de

junho de 2011.

[9] Terasic URL: http://www.terasic.com.tw/en/. Acesso em 26

de junho de 2011

[10] F. C. Branco and others, “Uso de Ferramentas e

Metodologias no Projeto de um Sistema Digital!, unpublished.

