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ABSTRACT 

 
The integrated circuit designs are reaching high levels 

of complexity. Due to the great importance of these 

devices nowadays they are performing increasingly 

complex functions. In this case the use of methodologies 

and tools in development process such devices are 

essential, as well as projecting Systems-on-Chip (SoC) 

with reusable IP-Cores. This paper describes the 

designing of a Soft IP-Core for edge detection in 

monochrome images using the Sobel Operator, applying 

the ipPROCESS methodology, a Brazilian initiative in 

order to create a standard and enhance the development 

of integrated circuit design in the country. 

 

INTRODUCTION 

 

Nowadays, electronic devices are more complex, 

adding more information, communications and 

entertainment, reaching more consumers. This market 

growth is due to decreased production costs [1]. 

However, the increasing complexity of Integrated 

Circuits designs and the speed at which products should 

hit the market, that resulted in the creation of tools and 

methodologies to be applied in development projects. 

One of the methods for IC's development are based on 

pre-designed and reusable components, called IP-cores 

(Intellectual Property - IP) [2, 3, 4]. 

In last few years, the federal government is 

encouraging the development of IC's, among the various 

initiatives highlight the Brazil-IP project. One of the 

many results produced was the development process for 

Soft IP-core designs, called ipPROCESS. Your goal is to 

ensure the production of high quality IP-cores [5]. 

This paper presents an IP-core development which 

performs edge detection in monochrome images using the 

Sobel operator [6]. Tools and methodologies specified by 

ipPROCESS were applied in the project. Although, the 

IP-core was embedded in an FPGA connected to an 

analog camera.  

The approach taken in this paper surrounds a brief 

explanation of the ipPROCESS, describing their main 

characteristics and development methodology. The 

section 4 presents a description of the conception, 

architecture and functional verification stages for this 

project. Section 5 shows the prototype used in the tests 

and the results achieved by the project. Finally, there is a 

general review of the project and future works. 
 

 

IPPROCESS 

 

The design of an IP-core requires a high-added 

knowledge and involves different working groups, which 

perform the specification, implementation using a 

hardware description language (HDL), simulation, 

functional verification, synthesis, prototyping and 

protection of intellectual property. All these aspects of the 

project requires many skills in different areas, as well as 

mechanisms to support the teamwork [4,7]. 

The development of an IP-core should allow its 

interaction with other components to form a System-on-

Chip (SoC). Therefore, it's essential that each component 

has the smallest faults as possible [4, 5, 7]. 

The ipPROCESS is a process of IP-cores 

development with FPGA prototyping which provides a 

disciplined approach, assigning tasks and responsibilities 

within the context of an organized development. The goal 

is to ensure the production of high quality modules that 

meet the needs of its end users, while meeting the 

demands of a competitive design market [5]. 

The ipPROCESS was based on the Rational Unified 

Process (RUP), a software engineering process that 

provides an approach to assign tasks and responsibilities, 

where a "discipline" is a related collection works. It also 

surrounds a set of practices, important in the context of 

reuse and detection errors, such as requirements 

management and changes in visual modeling with UML, 

use of component architectures and constant quality 

check [1, 4, 7]. 

Some techniques used in eXtreme Programing (XP) 

were placed in ipPROCESS. His emphasis on teamwork, 

with managers, developers and customers as part of a 

dedicated team to product’s quality and its focus on 

automation, validation and use of a regression test suite, 

allow the ipPROCESS application a relatively simple set 

of rules and practices related to planning, design, coding 

and testing [8]. 

The phases of ipPROCESS are shown in Figure 1.  

The first phase is the Conception. At this point, the goal 

is to utilize the customer understanding needs to 

recognize the functional and nonfunctional requirements.  

At this step of the process, the scope must be defined. 

In the Architecture phase is used the survey 

requirements made in the previous phase to design the 

structure of the IP-core. Each requirement is mapped to 

one or more components then are created communication 

protocols between them. Still in the Architecture, plans 

for verifying and integration between the components 

must be documented. 



 

Figure 1 – Phases of ipPROCESS [5].

 

The third phase is called RTL Design. In this step the 

conceptions of design, defined previously, are used for 

deployment with hardware description languages (HDL). 

The coding is done based on the strategies for verification 

and integration of modules documented.

Finally, the last phase is the Physical Prototy

this stage, the IP-core physical design should be done. All 

components must be synthesized and tested, information 

about the FPGA used should be documented, and the 

steps needed for the prototype have to be reproduced.

 

METHODOLOGY 

 

In this paper we applied the methodology of 

ipPROCESS and some artifacts were produced according 

to the discipline process. The making of these products is 

dynamic, with each IP-Core update the documents are 

reviewed and refined. 

The ipPROCESS workflow must meet the sta

characteristics of development. Figure 2 illustrates how 

this flow should occur. The phases of the process can 

easily be identified in the sequence in which courses 

should be conducted. 

 

Figure 2 – ipPROCESS Workflow [3].

 

DEVELOPMENT 

 

In this section, the development process will be 

briefly described using the ipPROCESS's phases for 

structure it. Because of the reduced space in this paper, 
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n, the development process will be 

briefly described using the ipPROCESS's phases for 

structure it. Because of the reduced space in this paper, 

this description phases haven't the due attention, but 

detailed explanations can be founded in the referenced 

works [3, 4, 10]. 

 

Conception 

 
Early in the project, three documents of the 

Requirements discipline were produced. The first was the 

glossary, it's used to identify terms and expressions and to 

establish a unique understanding of the project among its 

members.  

Another artifact was the Vision Document, which 

provides an initial view of the IP

characteristics and constraints, besides identifying which 

users should be involved in each process stage.

 

Architecture  

 

This step is the conversion of the ideas into an 

architectural model. During this phase are identified the 

architecture components, once considered the 

requirements of IP-core. The elements are modeled in 

class diagrams and use cases. In some cases it is also 

possible to describe the processes through finite state 

machines (state diagrams) [2]. The Figure 3 presents a 

Class Diagram, produced at this step.

 

Figure 3 – Class Diagram.

The Use Case model defines the actors involved, the 

flow of primary and secondary events, special 

requirements, preconditions and postconditions, 

nonfunctional requirements and associated extension 

points. The Figure 4 presents a vers

produced on the development process.

 
RTL Design and Physical Prototyping

 

In this step, the produced artifacts were the RTL 

simulation model and the tests description for each 

component implemented. 

The RTL design was described in Verilog,

hardware description language. The project was 

embedded in a kit DE2, which offers several hardware 

resources such as SDRAM, a FPGA IC Altera Cyclone II 
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The Use Case model defines the actors involved, the 

flow of primary and secondary events, special 

requirements, preconditions and postconditions, 

nonfunctional requirements and associated extension 

points. The Figure 4 presents a version of Use Case 

produced on the development process. 
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embedded in a kit DE2, which offers several hardware 

resources such as SDRAM, a FPGA IC Altera Cyclone II 



2C35, analog digital conversion module for the camera 

input signal and VGA output module. 

Figure 4 – Use Case Diagram.

 

The development was focused on the implementation 

of the Sobel's operator [6]. In Figure 5 you can see the 

overall system architecture, highlighting the region that 

includes the CONTROL, CONVOLUTION and 

BUFFER LINE modules, that are effectively developed, 

the other blocks are provided by Terasic, that made the 

kit and authorizes the use and modification for non

commercial applications. 
 

 

Figure 5 – Overall System Architecture.
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Overall System Architecture. 

The approach aims to decrease SDRAM memor

access. The Sobel operator uses a 3x3 mask to perform a 

convolution of the image. This calculation is done 

iteratively. Therefore, the CONVOLUTION block 

processes only three lines of the image at every step. The 

line immediately below, which will be the 

calculated, it is loaded to the LINE BUFFER block in 

parallel, Figure 6 illustrates this process.

 

 

Figure 6 – Design Strategy Illustration.

 
The CONTROL module controls the entire process of 

defining what are the lines involved in the co

and what is the line being loaded into BUFFER LINE. 

This entire process is done in parallel and synchronized 

with the clock generated by the ITU

i.e., while the block is performing the convolution 

calculation, the next line is stor

Finally, after the processed pixel  is sent to the 

module CONTROL VGA, which generate signals of 

horizontal and vertical sync to be shown on a VGA 

monitor. 

 

 
Functional Verification 

 
In the fourth stage, the RTL design is embedded in an 

FPGA and quality IP-Core is evaluated and estimated to 

validate the implementation. 

called Functional Verification.

There are three types of functional verification that 

can be applied: the static, dynamic, and hybrid. The static

(or formal) verification focuses on the code structure, like 

case statements incomplete, assignments, if/else 

inconsistent or missing signals on sensitivity list. The 

formal verification can prove the absence of errors 

through mathematical equations and v

properties. 

The dynamic verification is coverage

checking how of the design functionalities was tested, 

which can give a security of the completeness degree of 

the verification process. The constrained

very used strategy in this type of verification, in which 

the input signals are generated based on a probability 

distribution function directed to the Design Under 

Verification (DUV). 

The hybrid verification combines the static to the 

dynamic. The tactics used in this 

verification using the Grey Box approach, which is a mix 
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Design Strategy Illustration. 

The CONTROL module controls the entire process of 

defining what are the lines involved in the convolution 

and what is the line being loaded into BUFFER LINE. 

This entire process is done in parallel and synchronized 

with the clock generated by the ITU-R 656 DECODER, 

i.e., while the block is performing the convolution 

calculation, the next line is stored in BUFFER LINE. 

Finally, after the processed pixel  is sent to the 

module CONTROL VGA, which generate signals of 

horizontal and vertical sync to be shown on a VGA 

In the fourth stage, the RTL design is embedded in an 

Core is evaluated and estimated to 

validate the implementation. This validation process is 

called Functional Verification. 

There are three types of functional verification that 

can be applied: the static, dynamic, and hybrid. The static 

(or formal) verification focuses on the code structure, like 

case statements incomplete, assignments, if/else 

inconsistent or missing signals on sensitivity list. The 

formal verification can prove the absence of errors 

through mathematical equations and verification of model 

The dynamic verification is coverage-driven, 

checking how of the design functionalities was tested, 

which can give a security of the completeness degree of 

the verification process. The constrained-random is a 

ategy in this type of verification, in which 

the input signals are generated based on a probability 

distribution function directed to the Design Under 

The hybrid verification combines the static to the 

dynamic. The tactics used in this project is the hybrid 

verification using the Grey Box approach, which is a mix 



between the Black Box, where the verification process 

sees the DUV as a function, deriving the outputs from the 

inputs, and White Box, where the DUV variables and 

internal signals are visible and can be accessed by the 

verification environment. 

The reference models were programmed in System 

Verilog language, using the same documentation as 

applied to the RTL design, thus producing similar 

modules. The DUV could be tested in an iterative form, 

where corrections were made in the project and tested 

again until they reached satisfactory levels. 

 

RESULTS 

 

The designed IP-core was embedded in a kit of Terasic 

DE2, connected to a mini-CCD camera-SH ¼ 0.1Lux, to 

test its operation. Figure 7 shows the screen of a VGA 

monitor with the result of Sobel filter. In the Figure 8 can 

be viewed all the equipment up and running. The 

processing is done in real time, because processing of 

each pixel is accomplished in one clock cycle. In tests the 

frame rate was around 60 frames per second, this number 

is limited by the capacity of the camera and TV decoder 

DECODER 7181B. 

 

 
 

Figure 7 – Frames processed. 

 

 
 

Figure 8 – Working System. 

 
CONCLUSION AND FUTURE WORK 

 

The use of ipPROCESS methodology provides an 

important documentation, and a series of well defined 

activities streamlines the design and decreases errors. The 

implementation is facilitated, since the requirements are 

well defined and the elaborate diagrams. The project can 

be divided into a great team without causing problems at 

the time of integration. The documentation produced 

decreases the learning time of students who will continue 

the project development. In addition, the results achieved 

by RTL simulation model and the functional verification, 

are in agreement with expectations. 

This phase of the project is not finished yet. The 

analog camera generates image noise, which will be 

reduced by a pre-filter. It will also be made a qualitative 

analysis of the resulting image, as well as a new 

functional verification for IP-core developed. 

The objective of this project aims to build a camera to 

be used in a robot. In future work, the analog camera will 

be replaced by a digital, the IP-core developed will be 

used as an initial stage of the embedded vision system 

that will result in the coordinates of objects in the 

captured image. 
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