
DECREASING TRANSISTOR COUNT USING AN

EDGES SHARING TECHNIQUE IN A GRAPH STRUCTURE

Vinicius N. Possani, Renato S. de Souza, Julio S. Domingues Jr.,

Luciano V. Agostini, Felipe S. Marques, Leomar S. da Rosa Jr.

{vnpossani, rsdsouza, jsdomingues, agostini, felipem, leomarjr}@inf.ufpel.edu.br

Group of Architectures and Integrated Circuits – GACI

Federal University of Pelotas – UFPel

Pelotas – Brazil

ABSTRACT

Increasingly, in VLSI designs, the integrated circuits

have higher density of transistors on the small physical

area, power consumption reduced and greater

performance. An important factor that has contributed for

this is the representation of logic functions with a reduced

number of transistors. Thus, we sought an alternative

solution to common methods, such as factorization, to

generate optimized transistors networks. This paper

presents a graph-based structure to represent a transistor

network and a technique to reduce the number of

transistors by edges sharing. Our method can achieve

non-series-parallel arrangements while methods based in

factorization can only derive series-parallel arrangements,

which may not be the best solution. Thus, when applied to

the set of 4 input p-class logic functions, our method has

advantages if compared to the good-factor algorithm

implemented in SIS software. Moreover, using other

arbitrary logical functions our algorithm can achieve

results as good as those generated by techniques based in

BDD methods.

1. INTRODUCTION

The micro electronics industry has brought great

advances in last years, no doubt, designing digital circuits

VLSI becomes an increasingly task of extreme

complexity and high cost of resources and time. In this

context, aid tools are applied to support these projects,

contributing to the designers manipulate more transistors

and decreasing the development cycle. Therefore, the

automatically generation of transistor networks makes

simple some arduous tasks. Moreover, it also reduces the

aggregate cost to the final product.

This paper proposes an edge sharing method, on a

graph structure, to generate optimized transistor networks.

In our approach, the input Boolean expression is

translated into a graph that is later optimized through

edges sharing. Nowadays, alternative methods which are

available in the literature has been study and applied in

this context. They are based on graph optimizations, were

each edge in the graph keeps an association with a

transistor in the network. The main idea is try to minimize

the edges in an existent graph [1] or to compose a new

graph with a reduced number of edges [2]. These

alternative methods are used because the common

technique to optimize a transistor network is based on

factorization [3-4] and this may not be an optimum

solution [5]. In factorization method an input Boolean

expression is manipulated in order to reduce the number

of literals that compose the expression. Subsequently, this

optimized expression is translated in a transistor network

composed by a reduced number of switches. In this sense,

our sharing method intent derives non-series-parallel

arrangements in order to deliver better results than the

common technique.

2. EDGES SHARING METHOD

The edges sharing method considers as input a sum-

of-products (SOP) expression. In order to translate the

expression to a graph, a parser is needed. The parser will

deliver one vector of literals for each product storing

these vectors in a list. Afterward, it is started the assembly

of the graph by removing vectors one at a time from this

list and creating an edge in the graph for each literal

found in the vector. As an example we will use the Exp.

(1) which represents a „XOR‟ with 4 inputs. Figure 1.a

shows the graph obtained of this expression.

!A*!B*!C*D + !A*!B*C*!D + !A*B*!C*!D + !A*B*C*D +

A*!B*!C*!D + A*!B*C*D + A*B*!C*D + A*B*C*!D (Exp.1)

In the sequence, all paths in the graph are traversed in

order to recognize identical edges (edges that represent

same literals and may have at least one vertex in

common). If this condition is verified in the graph, then

the identical edges are shared. This procedure consists in

keeping only one of these identical edges, eliminating the

remaining edges and merge the vertices which connect

these. The vertices that will be merged are detached with

the circumferences without fill in the figures below. This

is exemplified in Figure 1.b where the edge „!A‟ was

shared and the vertices 1, 5, 8 and 11 were merged. Now

the edge „A‟ will be shared generating the graph shown in

Figure 1.c. So, in this moment the vertices 8 and 17, one

at a time, are considered the new starting point of the

optimization process, where the algorithm sought

identical edges between these two vertices and the vertex

4. This way the edge „!B‟ connected to the vertex 8 will

be shared and in sequence this occurs with edge ‟B‟.

Afterward that, the same process is applied to the edges

„!B‟ and „B‟ attached to the vertex 17. This is

demonstrated in Figure 1.d.

Fig. 1 – Steps of the sharing method, traversing the graph

from the vertex 0 to the vertex 4.

Considering the Figure 1.d, departing from the

vertices 6, 12, 15 and 21, one at a time, and traversing the

graph toward the vertex 4, it is not possible perform new

optimizations because identical edges are not found

between these vertices and the vertex 4. Then the graph is

traversed from the vertex 4 to the vertex 0. Thus, the

edges „D‟ are identified and were shared as the Figure 2.a.

demonstrates. In the next step the edges „!D‟ will be

shared resulting in the graph of the Figure 2.b.

Now, consider the vertices 10 and 19 as new start

points of the sharing method. There are two edges „!C‟

connected on the vertex 10, as Figure 2.b shows. Then it

is possible to remove the edge „!C‟ attached to the

vertices 10 and 12 merging the vertices 12 and 15. In this

case, the merging of the vertices 12 and 15 will derive

two edges „C‟ between the vertices 19 and 15. When this

is detected, just one of these edges remains in the graph.

Figure 2.c shows this state of the graph. This process is

applied again, but this time to the edges „C‟ that are

connected to the vertex 10, merging the vertices 6 and 21.

This will derives two edges „!C‟ between the vertices 19

and 21, one of this edges will be removed resulting in the

final graph illustrated by Figure 2.d.

Fig. 2 – Steps of the sharing method, traversing the graph

from the vertex 4 to the vertex 0.

Afterward, starting from the vertex 19, it is not

possible to perform other optimizations. Thus, the

optimization process ends. If any of these processes

generates an invalid path, a recovery routine is invoked

and the process is reversed. In the next session this

procedure will be explained.

3. LOGICAL EQUIVALENCE CHECK

To guarantee that the optimized transistor network

will be the faithful representation of the original

expression, a validation procedure is applied making sure

that all products described in the SOP are present in the

resultant graph and sure that sneak-paths (forbidden

paths) are not introduced on the network. Thus, it is

necessary to validate all paths of the graph each time an

edge is shared.

This procedure consists in comparing each path with

the products that compose the original expression. If a

path that does not belong to SOP has been introduced, a

routine checks if this path is sensitized or not sensitized.

When thinking in a transistor network, a path cannot be

sensitized if it contains both polarities, for example „A‟

and „!A‟. In order words, this path is not a valid path. If

the new path introduced is not sensitized it is accepted,

since it does not change the logical behavior of the

circuit. Otherwise, the graph needs to be restored to a step

before the optimization that generated the new path, and

this optimization is discarded. For this, a restore routine is

invoked. This routine is responsible for recovering the

edges and vertices that were eliminated from the graph

and reconnect them.

Notice that all original products of the Exp. (1) are

present in the graph of the Figure 2.d. However, by

sharing edges, some new paths were also introduced. All

these paths are allowed because are paths that cannot be

sensitized.

4. EXPERIMENTAL RESULTS

The proposed method has been implemented in Java

language using the NetBeans IDE. A tool containing the

core algorithms and the graphics interface was developed.

The graphics interface uses the Prefuse library [10].

Figure 3 illustrates it for the example from Expression 1.

Also, the tool presents a Spice netlist output module that

is capable to print Spice files. This feature permits the

integration of the developed tool with other commercial

or academic ones, making possible its application in a

real design flow. For example, the obtained Spice netlist

can be directly applied to electrical simulators.

Another interesting fact is that the proposed approach

may derive Wheatstone bridge networks like methods

proposed by [1] and [2]. The example illustrated in Figure

3 presents some bridge configuration. It is a benefit over

optimization approaches based on factorization that can

only derive series-parallel arrangements.

To describe our edges sharing method we used the

Exp. (1), referring to a „XOR‟ with four inputs. The

achieved network was compared to the result obtained by

others techniques described in [5], as BDD, OpBDD,

LBBDD, and to the good-factor algorithm from SIS

software. Our method reaches the same result like the

BDD, OpBDD and LBBDD methods, with 12 transistors,

overcoming the SIS with 16 transistors. Figure 3 shows

the graphical interface of the Soptimizer, which illustrates

a logic plain for the „XOR‟ with four inputs after

optimization.

Fig. 3 – Graphical interface of Soptimizer showing the

optimized XOR with 4 inputs.

In order to evaluate the proposed approach, 10

Boolean functions with 7 input variables were randomly

chosen. They were introduced in SIS software [11] and

extracted in their SOP form. Table 1 presents the obtained

results. The total numbers of literals for the SOP form are

described in column “# literals SOP form”. In this

analysis the expressions were factorized using the quick-

factor algorithm from SIS. The results are shown in

column “# literals SIS”. Results obtained using the

proposed approach are shown in column “# edges

Soptimizer”. The obtained gains over the SIS software are

shown in column “% of gain”.

Table 1 – Results for 10 Boolean Random Functions with

7 input.

Function

literals

SOP

form

literals

SIS

edges

Soptimizer

% of

gain

F1 133 76 61 19,73

F2 92 56 44 21,42

F3 78 48 39 18,75

F4 150 86 67 22,09

F5 119 68 58 14,70

F6 71 39 36 7,69

F7 170 99 80 19,19

F8 135 85 64 24,70

F9 111 70 56 20,00

F10 97 56 46 17,85

In all cases the proposed approach achieved smaller

results. Analyzing the obtained networks we identified

several bridge configurations in the arrangements

delivered by the tool. On the other hand, SIS software

delivers optimized expressions composed by „AND‟ and

„OR‟ operators. In this case only series-parallel networks

can be implemented, representing an overhead in terms of

area (transistor count).

Finally, the set of 4 input p-class logic functions was

used as benchmark to evaluate our proposed algorithm.

This set is composed by 3982 logic functions. Each logic

function was applied to SIS software as well as to our

solution. When running in SIS, the two available

algorithms were used, the quick-factor and the good-

factor. However, our proposed method was able to deliver

better solutions, reducing the total number of switches in

the networks as Tab. 2 illustrates.

Table 2 – Total transistor count for the set of 4 input p-

class logic functions.

 Total transistor count

Our solution 34990

Good-factory 37723

Quick-factory 38341

From the total of 3982 logic functions, our algorithm

was able to deliver 1900 networks with less transistor

count if comparing to the good-factor solution, 2033

networks with exact same transistor count, and only 49

networks with a smaller increase. Figure 4 shows the

amount of logic functions were our algorithm loses and

wins if comparing to the good-factor solution from SIS.

As it is possible to see, our approach is capable to reduce

up to 5 transistors in some networks. On the other hand,

the good-factor achieves some smaller transistor

networks. On these 49 cases, our algorithm was not able

to generate bridge configuration. The generated networks

are purely series-parallel solution.

Fig. 4 – Number of functions with an increase or decrease

in the transistor count when comparing with good-factor

algorithm.

5. CONCLUSIONS AND FUTURE WORKS

This paper presented an edges sharing method to

derive optimized transistor networks. The algorithm was

implemented in Java language and the graphical interface

uses the Prefuse library to show the optimized network.

The tool presents a Spice netlist output module that is

capable to print Spice files. Moreover our approach can

derive Wheatstone bridge networks. This arrangements

can represents a logic function with a reduced number of

transistors.

To describe our algorithm step by step, we use an

'XOR' with 4 inputs. This optimized network presents the

same result of the methods in [5] with 12 transistors

surpassing the SIS solution with 16 transistors. Also, 10

Boolean expressions with 7 input variables were

randomly chosen to be used as benchmark. The results

demonstrated that the proposed approach can delivery

networks with a transistor reduction up to 24.70% if

compared to the quick-factor algorithm from the SIS

software.

Nevertheless, when using the set of 4 input p-class

logic functions, our solution is able to perform a

considerable reduction of the total transistor count.

Moreover, it is capable to deliver 1900 networks with less

transistor count, if comparing to the good-factor solution,

reduce up to 5 transistors in some networks. The

optimized transistor networks generate by our approach

are validated ensuring the logical behavioral of the

network. As future work we intend to evaluate the

complexity of the algorithm. Also, we intend to compare

the proposed solution with the method described in [1-2].

6. REFERENCES

[1] J. Zhu et al. On the Optimization of MOS Circuits.

IEEE Transactions on Circuits and Systems:

Fundamental Theory and Applications. (1993), 412-

422.

[2] D. Kagaris et al. A Methodology for Transistor-

Efficient Supergate Design. IEEE Transactions On

Very Large Scale Integration (VLSI) Systems.

(2007), 488-492.

[3] Brayton, R. K. Factoring logic functions. IBM J. Res.

Dev. 31, 2. (1987), 187-198.

[4] Mintz, A. and Golumbic, M. C. Factoring boolean

functions using graph partitioning. Discrete Appl.

Math. 149, 1-3. (2005), 131-153.

[5] Da Rosa Jr, L. S. Automatic Generation and

Evaluation of Transistor Networks in Different Logic

Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre,

Brazil. (2008), 147 p.

[6] Golumbic, M. C.; Mintz, A.; Rotics, U. An

improvement on the complexity of factoring read-

once Boolean functions. Discrete Appl. Math. Vol.

156, n. 10. (2008), 1633-1636.

[7] Yoshida, H.; Ikeda, M.; Asada, K. Exact Minimum

Logic Factoring via Quantified Boolean

Satisfiability. International Conference on

Electronics, Circuits, and Systems. (2006), 1065-

1068.

[8] Poli, R. E. B.; Schneider, F. R.; Ribas R. P.; REIS,

A. I. Unified Theory to Build Cell-Level Transistor

Networks from BDDs. Symposium on Integrated

Circuits and Systems Design. (2003), 199–204.

[9] Da Rosa Jr. L. S.; Marques, F. S.; Schneider, F.;

Ribas, R. P.; Reis, A. I. A Comparative Study of

CMOS Gates with Minimum Transistor Stacks.

Symposium on Integrated Circuits and Systems

Design. (2007), 93–98

[10] Prefuse.org. The Prefuse Visualization Toolkit.

[Online] Avaliable: http://prefuse.org/ [Acessed: Oct.

12, 2010].

[11] Sentovich, E.; Singh, K., Lavagno; L., Moon; C.,

Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.;

Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A

system for sequential circuit synthesis. Tech. Rep.

UCB/ERL M92/41. UC Berkeley.

