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ABSTRACT 

 

Increasingly, in VLSI designs, the integrated circuits 

have higher density of transistors on the small physical 

area, power consumption reduced and greater 

performance. An important factor that has contributed for 

this is the representation of logic functions with a reduced 

number of transistors. Thus, we sought an alternative 

solution to common methods, such as factorization, to 

generate optimized transistors networks. This paper 

presents a graph-based structure to represent a transistor 

network and a technique to reduce the number of 

transistors by edges sharing. Our method can achieve 

non-series-parallel arrangements while methods based in 

factorization can only derive series-parallel arrangements, 

which may not be the best solution. Thus, when applied to 

the set of 4 input p-class logic functions, our method has 

advantages if compared to the good-factor algorithm 

implemented in SIS software. Moreover, using other 

arbitrary logical functions our algorithm can achieve 

results as good as those generated by techniques based in 

BDD methods. 

 

1. INTRODUCTION 

 

The micro electronics industry has brought great 

advances in last years, no doubt, designing digital circuits 

VLSI  becomes an increasingly task of extreme 

complexity and high cost of resources and time. In this 

context, aid tools are applied to support these projects, 

contributing to the designers manipulate more transistors 

and decreasing the development cycle. Therefore, the 

automatically generation of transistor networks makes 

simple some arduous tasks. Moreover, it also reduces the 

aggregate cost to the final product. 

This paper proposes an edge sharing method, on a 

graph structure, to generate optimized transistor networks. 

In our approach, the input Boolean expression is 

translated into a graph that is later optimized through 

edges sharing. Nowadays, alternative methods which are 

available in the literature has been study and applied in 

this context. They are based on graph optimizations, were 

each edge in the graph keeps an association with a 

transistor in the network. The main idea is try to minimize 

the edges in an existent graph [1] or to compose a new 

graph with a reduced number of edges [2]. These 

alternative methods are used because the common 

technique to optimize a transistor network is based on 

factorization [3-4] and this may not be an optimum 

solution [5]. In factorization method an input Boolean 

expression is manipulated in order to reduce the number 

of literals that compose the expression. Subsequently, this 

optimized expression is translated in a transistor network 

composed by a reduced number of switches. In this sense, 

our sharing method intent derives non-series-parallel 

arrangements in order to deliver better results than the 

common technique.  

 

2. EDGES SHARING METHOD 

 

The edges sharing method considers as input a sum-

of-products (SOP) expression. In order to translate the 

expression to a graph, a parser is needed. The parser will 

deliver one vector of literals for each product storing 

these vectors in a list. Afterward, it is started the assembly 

of the graph by removing vectors one at a time from this 

list and creating an edge in the graph for each literal 

found in the vector. As an example we will use the Exp. 

(1) which represents a „XOR‟ with 4 inputs. Figure 1.a 

shows the graph obtained of this expression. 

!A*!B*!C*D + !A*!B*C*!D + !A*B*!C*!D + !A*B*C*D + 

A*!B*!C*!D + A*!B*C*D + A*B*!C*D + A*B*C*!D    (Exp.1) 

In the sequence, all paths in the graph are traversed in 

order to recognize identical edges (edges that represent 

same literals and may have at least one vertex in 

common). If this condition is verified in the graph, then 

the identical edges are shared. This procedure consists in 

keeping only one of these identical edges, eliminating the 

remaining edges and merge the vertices which connect 

these. The vertices that will be merged are detached with 

the circumferences without fill in the figures below. This 

is exemplified in Figure 1.b where the edge „!A‟ was 

shared and the vertices 1, 5, 8 and 11 were merged. Now 

the edge „A‟ will be shared generating the graph shown in 

Figure 1.c. So, in this moment the vertices 8 and 17, one 

at a time, are considered the new starting point of the 

optimization process, where the algorithm sought 

identical edges between these two vertices and the vertex 

4. This way the edge „!B‟ connected to the vertex 8 will 



be shared and in sequence this occurs with edge ‟B‟. 

Afterward that, the same process is applied to the edges 

„!B‟ and „B‟ attached to the vertex 17. This is 

demonstrated in Figure 1.d. 

 

Fig. 1 – Steps of the sharing method, traversing the graph 

from the vertex 0 to the vertex 4. 

 

Considering the Figure 1.d, departing from the 

vertices 6, 12, 15 and 21, one at a time, and traversing the 

graph toward the vertex 4, it is not possible perform new 

optimizations because identical edges are not found 

between these vertices and the vertex 4. Then the graph is 

traversed from the vertex 4 to the vertex 0. Thus, the 

edges „D‟ are identified and were shared as the Figure 2.a. 

demonstrates. In the next step the edges „!D‟ will be 

shared resulting in the graph of the Figure 2.b. 

Now, consider the vertices 10 and 19 as new start 

points of the sharing method. There are two edges „!C‟ 

connected on the vertex 10, as Figure 2.b shows. Then it 

is possible to remove the edge „!C‟ attached to the 

vertices 10 and 12 merging the vertices 12 and 15. In this 

case, the merging of the vertices 12 and 15 will derive 

two edges „C‟ between the vertices 19 and 15. When this 

is detected, just one of these edges remains in the graph. 

Figure 2.c shows this state of the graph. This process is 

applied again, but this time to the edges „C‟ that are 

connected to the vertex 10, merging the vertices 6 and 21. 

This will derives two edges „!C‟ between the vertices 19 

and 21, one of this edges will be removed resulting in the 

final graph illustrated by Figure 2.d.  

 

Fig. 2 – Steps of the sharing method, traversing the graph 

from the vertex 4 to the vertex 0. 

 

Afterward, starting from the vertex 19, it is not 

possible to perform other optimizations. Thus, the 

optimization process ends. If any of these processes 

generates an invalid path, a recovery routine is invoked 

and the process is reversed. In the next session this 

procedure will be explained. 



3. LOGICAL EQUIVALENCE CHECK 

 

To guarantee that the optimized transistor network 

will be the faithful representation of the original 

expression, a validation procedure is applied making sure 

that all products described in the SOP are present in the 

resultant graph and sure that sneak-paths (forbidden 

paths) are not introduced on the network. Thus, it is 

necessary to validate all paths of the graph each time an 

edge is shared. 

This procedure consists in comparing each path with 

the products that compose the original expression. If a 

path that does not belong to SOP has been introduced, a 

routine checks if this path is sensitized or not sensitized. 

When thinking in a transistor network, a path cannot be 

sensitized if it contains both polarities, for example „A‟ 

and „!A‟. In order words, this path is not a valid path. If 

the new path introduced is not sensitized it is accepted, 

since it does not change the logical behavior of the 

circuit. Otherwise, the graph needs to be restored to a step 

before the optimization that generated the new path, and 

this optimization is discarded. For this, a restore routine is 

invoked. This routine is responsible for recovering the 

edges and vertices that were eliminated from the graph 

and reconnect them. 

Notice that all original products of the Exp. (1) are 

present in the graph of the Figure 2.d. However, by 

sharing edges, some new paths were also introduced. All 

these paths are allowed because are paths that cannot be 

sensitized. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed method has been implemented in Java 

language using the NetBeans IDE. A tool containing the 

core algorithms and the graphics interface was developed. 

The graphics interface uses the Prefuse library [10]. 

Figure 3 illustrates it for the example from Expression 1. 

Also, the tool presents a Spice netlist output module that 

is capable to print Spice files. This feature permits the 

integration of the developed tool with other commercial 

or academic ones, making possible its application in a 

real design flow. For example, the obtained Spice netlist 

can be directly applied to electrical simulators. 

Another interesting fact is that the proposed approach 

may derive Wheatstone bridge networks like methods 

proposed by [1] and [2]. The example illustrated in Figure 

3 presents some bridge configuration. It is a benefit over 

optimization approaches based on factorization that can 

only derive series-parallel arrangements. 

To describe our edges sharing method we used the 

Exp. (1), referring to a „XOR‟ with four inputs. The 

achieved network was compared to the result obtained by 

others techniques described in [5], as BDD, OpBDD, 

LBBDD, and to the good-factor algorithm from SIS 

software. Our method reaches the same result like the 

BDD, OpBDD and LBBDD methods, with 12 transistors, 

overcoming the SIS with 16 transistors. Figure 3 shows 

the graphical interface of the Soptimizer, which illustrates 

a logic plain for the „XOR‟ with four inputs after 

optimization. 

 

 
Fig. 3 – Graphical interface of Soptimizer showing the 

optimized XOR with 4 inputs. 

 

In order to evaluate the proposed approach, 10 

Boolean functions with 7 input variables were randomly 

chosen. They were introduced in SIS software [11] and 

extracted in their SOP form. Table 1 presents the obtained 

results. The total numbers of literals for the SOP form are 

described in column “# literals SOP form”. In this 

analysis the expressions were factorized using the quick-

factor algorithm from SIS. The results are shown in 

column “# literals SIS”. Results obtained using the 

proposed approach are shown in column “# edges 

Soptimizer”. The obtained gains over the SIS software are 

shown in column “% of gain”. 

 

Table 1 – Results for 10 Boolean Random Functions with 

7 input. 

Function 

# literals 

SOP 

form 

# literals 

SIS 

# edges 

Soptimizer 

% of 

gain 

F1 133 76 61 19,73 

F2 92 56 44 21,42 

F3 78 48 39 18,75 

F4 150 86 67 22,09 

F5 119 68 58 14,70 

F6 71 39 36 7,69 

F7 170 99 80 19,19 

F8 135 85 64 24,70 

F9 111 70 56 20,00 

F10 97 56 46 17,85 

 

In all cases the proposed approach achieved smaller 

results. Analyzing the obtained networks we identified 

several bridge configurations in the arrangements 

delivered by the tool. On the other hand, SIS software 

delivers optimized expressions composed by „AND‟ and 

„OR‟ operators. In this case only series-parallel networks 

can be implemented, representing an overhead in terms of 

area (transistor count). 

Finally, the set of 4 input p-class logic functions was 

used as benchmark to evaluate our proposed algorithm. 

This set is composed by 3982 logic functions. Each logic 

function was applied to SIS software as well as to our 

solution. When running in SIS, the two available 

algorithms were used, the quick-factor and the good-

factor. However, our proposed method was able to deliver 

better solutions, reducing the total number of switches in 

the networks as Tab. 2 illustrates. 

 



Table 2 – Total transistor count for the set of 4 input p-

class logic functions. 

 Total transistor count 

Our solution 34990 

Good-factory 37723 

Quick-factory 38341 

 

From the total of 3982 logic functions, our algorithm 

was able to deliver 1900 networks with less transistor 

count if comparing to the good-factor solution, 2033 

networks with exact same transistor count, and only 49 

networks with a smaller increase. Figure 4 shows the 

amount of logic functions were our algorithm loses and 

wins if comparing to the good-factor solution from SIS. 

As it is possible to see, our approach is capable to reduce 

up to 5 transistors in some networks. On the other hand, 

the good-factor achieves some smaller transistor 

networks. On these 49 cases, our algorithm was not able 

to generate bridge configuration. The generated networks 

are purely series-parallel solution. 

 

 
Fig. 4 – Number of functions with an increase or decrease 

in the transistor count when comparing with good-factor 

algorithm. 

 

5. CONCLUSIONS AND FUTURE WORKS 

 

This paper presented an edges sharing method to 

derive optimized transistor networks. The algorithm was 

implemented in Java language and the graphical interface  

uses the Prefuse library to show the optimized network. 

The tool presents a Spice netlist output module that is 

capable to print Spice files. Moreover our approach can 

derive Wheatstone bridge networks. This arrangements 

can represents a logic function with a reduced number of 

transistors. 

To describe our algorithm step by step, we use an 

'XOR' with 4 inputs. This optimized network presents the 

same result of the methods in [5] with 12 transistors 

surpassing the SIS solution with 16 transistors. Also, 10 

Boolean expressions with 7 input variables were 

randomly chosen to be used as benchmark. The results 

demonstrated that the proposed approach can delivery 

networks with a transistor reduction up to 24.70% if 

compared to the quick-factor algorithm from the SIS 

software. 

Nevertheless, when using the set of 4 input p-class 

logic functions, our solution is able to perform a 

considerable reduction of the total transistor count. 

Moreover, it is capable to deliver 1900 networks with less 

transistor count, if comparing to the good-factor solution, 

reduce up to 5 transistors in some networks.  The 

optimized transistor networks generate by our approach 

are validated ensuring the logical behavioral of the 

network. As future work we intend to evaluate the 

complexity of the algorithm. Also, we intend to compare 

the proposed solution with the method described in [1-2]. 
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