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ABSTRACT 

This paper presents a method to generate Boolean 

expressions from graphs that represent transistor 

networks. It uses graph compaction techniques to 

identify whether a transistor network has only series-

parallel associations or also has bridge connections. The 

algorithm was implemented in Java language and 

integrated to the Soptimizer tool, that is an academic tool 

to apply optimizations in Boolean functions based on 

graphs. It has been validated using the set of 4-input 

functions of the pClass library set. Concerning series-

parallel networks, all achieved results are compatible to 

the SIS tool, showing that the proposed algorithm is able 

to generate Boolean expressions from transistor 

networks. The SIS tool is the use reference as 

benchmark.  

 

1. INTRODUCTION 

Nowadays, most of the microelectronics market is 

mainly composed of Very Large Scale Integration 

(VLSI) circuits. These electronic devices can have 

billions of transistors in a single die. Due to the 

complexity of these circuits, Electronic Design 

Automation (EDA) tools play an important role in the 

design time. It reduces the time-to-market. Some of these 

tools work at the logic synthesis level, minimizing logic 

expressions through factorization procedures [1][2][3] in 

order to obtain equations with fewer literals. In factored 

form can be used to derive CMOS transistor networks. In 

this case, each literal of an equation is equivalent to a 

transistor. Therefore, when reducing the number of 

literals, the resultant network has fewer transistors. It 

leads to area saving and more efficiency on power 

consumption. 

In a previous work, we have proposed a method to 

generate transistor networks from sum-of-products. This 

method uses factorization techniques to reduce the 

number of transistors needed to implement a given 

Boolean function. Each transistor network is represented 

by a graph. The implementation of this methodology 

resulted in the Soptimizer tool. The Soptimizer only 

works at the graph level, and it is not able to generate a 

Boolean expression that symbolizes the Boolean function 

represented by a graph. In order to close this gap, this 

paper presents an algorithm able to extract expressions 

from these graphs. The method proposed in Soptimizer 

has proven to be a good solution, since it is able to 

generate bridge networks with fewer transistors when 

compared to equivalent series-parallel networks. 

The remaining of this paper is organized as follows. 

First, some basic concepts are reviewed in section 2. In 

section 3, we describe the proposed algorithm.  Some 

results are shown in section 4. Finally, conclusions are 

presented in section 5. 

 

2. BACKGROUND 

For better understanding of this paper, some related 

concepts are reviewed on this section. Sum-of-products 

(SOPs) are canonical forms to represent Boolean 

functions through expressions. These expressions are not 

optimal concerning the number of literals. Factorization 

[1][2][3] is an optimization technique that can be applied 

to Boolean expressions (such as SOPs) aiming the 

minimization of some criteria. Usually, it aims the 

reduction on the number of literals in a given expression. 

There are algebraic and Boolean methods for 

factorization. Due to the algorithm complexity, algebraic 

are faster than Boolean methods. However, Boolean 

factorization can achieve better results. 

Boolean functions can be represented in different 

ways. Graphs can be used to represent them. A graph is 

an ordered pair G = (V, E) comprising a set V of vertices 

or nodes together with a set E of edges or lines, which 

are 2-element subsets of V. A directed graph is an 

ordered pair D = (V, A) with V a set vertices, and A a set 

of ordered pairs of vertices, called arcs, directed edges, 

or arrows. An arc a = (x, y) is considered to be directed 

from x to y; y is called the head and x is called the tail of 

the arc; y is said to be a direct successor of x, and x is 

said to be a direct predecessor of y. If a path leads from 

x to y, then y is said to be a successor of x and reachable 

from x, and x is said to be a predecessor of y. 

Different kinds of data structures can be used to store 

graphs in computer systems. The adjacency matrix is 

one of them. This is an n by n matrix A, where n is the 

number of vertices in the graph. If there is an edge from 

a vertex x to a vertex y, then the element ax,y is 1 (or in 

general the number of xy edges), otherwise it is 0. In 

computing, this matrix makes it easy to find subgraphs, 

and to reverse a directed graph. 

Besides Boolean function representation, graphs can 

also be used to represent transistor networks. In this 

case, each edge represents a given transistor and the 

vertices are points of connections among transistors. 



Usually, CMOS transistor networks are constructed 

through series-parallel associations. In this case, each 

literal of a Boolean expression becomes an edge 

(transistor) in the graph representation. Therefore, the 

fewer literals in an expression the fewer transistors are 

needed to implement a Boolean function. 

 

3. THE PROPOSED ALGORITHM 

This section describes an algorithm to extract 

Boolean expressions from graphs that represent 

transistor networks. The proposed method is integrated 

with the Soptimizer tool. This tool factorizes SOPs 

(represented by graphs) using algebraic techniques 

applied to graphs. It reduces the number of edges 

required to represent a given Boolean function. As result, 

the Soptimizer tool presents a minimized graph. 

In order to allow integration with other tools and 

other validation procedures, a Boolean expression is 

desired. The generation of a Boolean expression requires 

successive traversals of a graph from a terminal node to 

another. The algorithm performs these traversals 

applying graph compaction over the edges. On each 

traversal, every edge associated in series to an adjacent 

edge is “compacted” to a single edge. If there is no more 

series edges to be compacted, then the algorithm start to 

traverse the graph aiming the compaction of edges 

associated in parallel. When there are no more edges in 

parallel to be compacted, the algorithm is started again 

looking for series compaction. This iterative process 

stops when there is no more possibility of series and 

parallel compaction. 

The graph compression steps are demonstrated in 

Fig.1. The initial graph is shown in Fig.1.a. The process 

begins by searching adjacent edges connected in series in 

sub-graphs. In this example, the first sets of edges to be 

compacted are connected to the terminal node T0. For 

instance, the edges “!F”, “!E” and “!C” are associated in 

series, and can be compacted to a single edge.  

Therefore, the sub-graph composed by these edges is 

replaced by a new edge that actually is a list of edges. In 

this case, this new edge is referred as the product 

“!F.!E.!C”. In a similar way, the edges “F.E.C” and 

“D.B.A” are created. This process is depicted in Fig.1.b.

  

After perform the first iteration of series compaction, 

the algorithm looks for parallel associations. In Fig.1.b, 

there are two sub-graphs in parallel. As shown in 

Fig.1.c, the edges “!F.!E.!C” and “F.E.C” can be 

compacted in a single edge that is referred as “!F.!E.!C 

+ F.E.C”. At this point, there are no more edges in 

parallel. The algorithm is restarted in order to look for 

edges associated in series. Hence, the graph in Fig.1.c 

can be reduced to the one in Fig.1.d. The final graph has 

a single edge that represents the Boolean function 

expressed by “((!F.!E.!C+F.E.C).D.B.A)”. 

Using graph compaction it is possible to identify 

bridge connections. Accordingly to [3], the minimal 

number of transistors to implement a Boolean function 

cannot be achieved by purely series-parallel networks. As 

an alternative, “bridge” transistor networks can be used. 

In this case, bridge connections are compacted through 

the compaction algorithm. Therefore, the final graph 

will have at least five edges on its construction (the 

minimal construction of a bridge network). 
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Figure1: Steps de Algorithm 

 

The main objective of our method is to extract a 

Boolean expression from a graph. When a graph can be 

compacted into a single edge (meaning that there are 

only series-parallel connections), the Boolean expression 

is naturally achieved. That is not the case of bridge 

networks that requires a more sophisticated algorithm to 

construct the expression. An example of bridge network 

compaction can be seen in Fig.2. and Fig.3. 
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Figure 2: Initial Graph of Type Bridge. 
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Figure 3: Graph Type Bridge Compacted. 

 

Considering the graph compaction of a bridge 

network, it is necessary to roam it in order to generate a 

Boolean expression that represents the whole graph. This 

final procedure is done using an adjacency matrix to 

represent the compacted graph. The expression can be 



extracted applying a depth-first-search algorithm on the 

adjacency matrix. The search starts on a terminal node 

and ends on another. Fig.4 shows the searches on the 

adjacency matrix that represents the compacted graph of 

Fig.3. 
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Figure 4: Paths generated from the graph traversal. 

 

The depth-first-search starts on the terminal node 

“T0”, i.e., on the index zero of the adjacency matrix. We 

use a stack to keep a traveled path. This stack stores the 

indexes of the adjacency matrix which represent nodes of 

a graph. Starting from the row zero, the algorithm looks 

for the first that represent a graph edge. At this point, 

column „2‟, which represents the edge "A.B.!C", is the 

first choice. Therefore, the index „2‟ is added into the 

stack. Through a recursive routine, the row „2‟ is the 

next point for search. In this row, the first column that 

indicates an edge is the column „0‟. However, this row 

was already visited. This way, the next edge to be 

crossed to is the edge “G”. Therefore, the next row is the 

one with index „3‟. This process is repeated through the 

interconnected vertices, and it stops when the other 

terminal vertex is reached. In the examples of fig. 4, the 

index „4‟ represents the terminal node “T0”. At the end, 

there will be a stack representing a path through both 

terminals. 

Each constructed path symbolizes an expression 

which is a product of the edges expressions. In the 

example of Fig. 4, there are four resulting paths. A sum 

of the path products results in a Boolean expression that 

represents whole transistor network. Some products in a 

path are equivalent to products of other paths. Hence, 

associative techniques can be applied to reduce the 

number of literals of the final expression. In this 

example, the result of this process is the equation below: 

 

A.B.!C.(!D.E+G.D.E)+!A.!B.(G.!D.E+D.E) 

 

The Prefuse tool kit [4] was strongly used to debug 

the Soptimizer tool. This library provides a graphical 

framework for graph visualization. Later, we decided to 

provide a visual output to the user. An example of visual 

output is shown in Fig.5. 

 

 
Figure 5: Soptimizer graphical interface. 

 

4. EXPERIMENTAL RESULTS 

Since the Soptimizer tool is implemented in Java 

language, the proposed algorithm was implemented 

through a set of Java classes that are already integrated 

into the tool and the Prefuse tool kit, which is used to 

visualize all generated graphs. 

In order to validate the expressions generated by our 

algorithm, we have run a set of experiments on a 

computer with a Core2Duo processor and 4GB of RAM, 

running Ubuntu 10.10 - 64-bit. The first experiment 

validated 10 functions randomly chosen from the 

complete set of the 7-input pClass library. The second 

experiment has validated all 3,982 functions of the 4-

input pClass functions library as benchmark. 

All expressions were factorized through the 

Soptimizer tool and the resultant expressions were 

generated through the proposed algorithm in 

approximately 8 minutes. Since the expressions 

generated by our algorithm are equivalent to the input 

expressions, we assume that our algorithm is correct. 



Notice that it also validates the Soptimizer tool results. 

This tool manipulates a graph constructed from an 

expression. Since the expressions generated from graphs 

resultant from the Soptimizer are equivalent to the 

original expressions, this means that the methods 

implemented by the tool are also correct. 

Tab.1 presents a comparison of the SIS [5] 

factorization procedure and our method associated to the 

Soptimizer tool, considering a sub set of 10 functions of 

the 4-input pClass library. The second column shows the 

number of literals of each SOP that represents each 

function. The third column shows the number of literals 

of the factored forms generated by the SIS tool. The 

fourth column presents the number literals achieved by 

the Soptimizer. The last one presents the number of 

literals achieved by our algorithm. 
Tab.1 – Literals count of factored forms 

Function 

# literals 

 in the 

 SOP 

#literals 

SIS 

#literals 

Soptimizer 

#literals 

Soptimizer 

Plus 

87 14 11 10 10 

100 7 6 6 6 

126 12 9 9 9 

231 8 7 6 9 

393 13 10 8 8 

594 11 9 8 8 

1183 13 10 8 8 

2284 16 13 12 12 

3622 12 10 9 9 

3635 22 15 13 36 

In the second experiment, all 4-input functions from 

pClass library have been synthesized using the 

Soptimizer tool. Furthermore, we have computed the 

number of transistors (number of edges) from the 

resulting graphs and the number of literals from the 

expressions generated by our method. As expected, in 

2,192 functions (from 3,982), the numbers are the same 

when the resulting graph represents a series-parallel 

transistor network. However, when the resulting graph is 

a bridge network, the expressions have a higher number 

since the Boolean equations are expressed through the 

operators AND and OR that denotes series and parallel 

associations, respectively. 

Besides, we have also compared our algorithm to 

factorization method implemented on SIS using the same 

pClass library. Our algorithm has achieved better results 

in a set of 107 functions. In 2,011 others cases, the 

results are the same. In the other 1,864, the SIS tool 

achieved better results. Currently, the Soptimizer tool is 

not able to eliminate non-sensitizable paths in a 

transistor network. Even though the resultant graphs are 

Boolean equivalent to the original expressions, when the 

Soptimizer manipulates the initial graph, it may 

introduce false paths in the network. It is demonstrated 

in Fig.6. The path going through edges “A”, “G” and 

“!A” is not sensitizable given that the variable “A” 

appears in both polarities. Our method generates the 

expression “A.(G.!A+D) + !B(G.D+!A)”, while it could 

be reduced to “A.D+!B(G.D+!A)”. 
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Figure 6: Example of a non-sensitizable path. 

 

5. CONCLUSIONS AND FUTURE WORKS 

This paper presented a method to extract Boolean 

expressions from graphs. This method fills a gap 

between Soptimizer and other tools that uses expression 

as input. Our algorithm is able to generate expression for 

series-parallel and bridge transistor networks represented 

by graphs. Boolean expressions do not have an operator 

to denote bridge connections. In this way, when 

expressed using the primitive operators, a lot of 

redundancies are added into the expression. Our 

algorithm is able to handle this problem, leading to 

optimal solutions. As future work we intent to eliminate 

non-sensitized paths of the transistor networks generated 

by the Soptimizer. It can be done by using Boolean 

methods during the graph manipulation. This way, we 

can reduce the transistor count and achieve smaller 

expressions in terms of literals. 
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