
Extraction of Boolean Expressions from Transistor Networks
Julio S. Domingues Jr, Renato S. de Souza, Vinicius N. Possani,

Felipe S. Marques, Leomar S. da Rosa Jr.

{jsdomingues, rsdsouza, vnpossani, felipem, leomarjr}@inf.ufpel.edu.br

Group of Architectures and Integrated Circuits – GACI

Universidade Federal de Pelotas – UFPel

Pelotas – Brazil

ABSTRACT

This paper presents a method to generate Boolean

expressions from graphs that represent transistor

networks. It uses graph compaction techniques to

identify whether a transistor network has only series-

parallel associations or also has bridge connections. The

algorithm was implemented in Java language and

integrated to the Soptimizer tool, that is an academic tool

to apply optimizations in Boolean functions based on

graphs. It has been validated using the set of 4-input

functions of the pClass library set. Concerning series-

parallel networks, all achieved results are compatible to

the SIS tool, showing that the proposed algorithm is able

to generate Boolean expressions from transistor

networks. The SIS tool is the use reference as

benchmark.

1. INTRODUCTION

Nowadays, most of the microelectronics market is

mainly composed of Very Large Scale Integration

(VLSI) circuits. These electronic devices can have

billions of transistors in a single die. Due to the

complexity of these circuits, Electronic Design

Automation (EDA) tools play an important role in the

design time. It reduces the time-to-market. Some of these

tools work at the logic synthesis level, minimizing logic

expressions through factorization procedures [1][2][3] in

order to obtain equations with fewer literals. In factored

form can be used to derive CMOS transistor networks. In

this case, each literal of an equation is equivalent to a

transistor. Therefore, when reducing the number of

literals, the resultant network has fewer transistors. It

leads to area saving and more efficiency on power

consumption.

In a previous work, we have proposed a method to

generate transistor networks from sum-of-products. This

method uses factorization techniques to reduce the

number of transistors needed to implement a given

Boolean function. Each transistor network is represented

by a graph. The implementation of this methodology

resulted in the Soptimizer tool. The Soptimizer only

works at the graph level, and it is not able to generate a

Boolean expression that symbolizes the Boolean function

represented by a graph. In order to close this gap, this

paper presents an algorithm able to extract expressions

from these graphs. The method proposed in Soptimizer

has proven to be a good solution, since it is able to

generate bridge networks with fewer transistors when

compared to equivalent series-parallel networks.

The remaining of this paper is organized as follows.

First, some basic concepts are reviewed in section 2. In

section 3, we describe the proposed algorithm. Some

results are shown in section 4. Finally, conclusions are

presented in section 5.

2. BACKGROUND

For better understanding of this paper, some related

concepts are reviewed on this section. Sum-of-products

(SOPs) are canonical forms to represent Boolean

functions through expressions. These expressions are not

optimal concerning the number of literals. Factorization

[1][2][3] is an optimization technique that can be applied

to Boolean expressions (such as SOPs) aiming the

minimization of some criteria. Usually, it aims the

reduction on the number of literals in a given expression.

There are algebraic and Boolean methods for

factorization. Due to the algorithm complexity, algebraic

are faster than Boolean methods. However, Boolean

factorization can achieve better results.

Boolean functions can be represented in different

ways. Graphs can be used to represent them. A graph is

an ordered pair G = (V, E) comprising a set V of vertices

or nodes together with a set E of edges or lines, which

are 2-element subsets of V. A directed graph is an

ordered pair D = (V, A) with V a set vertices, and A a set

of ordered pairs of vertices, called arcs, directed edges,

or arrows. An arc a = (x, y) is considered to be directed

from x to y; y is called the head and x is called the tail of

the arc; y is said to be a direct successor of x, and x is

said to be a direct predecessor of y. If a path leads from

x to y, then y is said to be a successor of x and reachable

from x, and x is said to be a predecessor of y.

Different kinds of data structures can be used to store

graphs in computer systems. The adjacency matrix is

one of them. This is an n by n matrix A, where n is the

number of vertices in the graph. If there is an edge from

a vertex x to a vertex y, then the element ax,y is 1 (or in

general the number of xy edges), otherwise it is 0. In

computing, this matrix makes it easy to find subgraphs,

and to reverse a directed graph.

Besides Boolean function representation, graphs can

also be used to represent transistor networks. In this

case, each edge represents a given transistor and the

vertices are points of connections among transistors.

Usually, CMOS transistor networks are constructed

through series-parallel associations. In this case, each

literal of a Boolean expression becomes an edge

(transistor) in the graph representation. Therefore, the

fewer literals in an expression the fewer transistors are

needed to implement a Boolean function.

3. THE PROPOSED ALGORITHM

This section describes an algorithm to extract

Boolean expressions from graphs that represent

transistor networks. The proposed method is integrated

with the Soptimizer tool. This tool factorizes SOPs

(represented by graphs) using algebraic techniques

applied to graphs. It reduces the number of edges

required to represent a given Boolean function. As result,

the Soptimizer tool presents a minimized graph.

In order to allow integration with other tools and

other validation procedures, a Boolean expression is

desired. The generation of a Boolean expression requires

successive traversals of a graph from a terminal node to

another. The algorithm performs these traversals

applying graph compaction over the edges. On each

traversal, every edge associated in series to an adjacent

edge is “compacted” to a single edge. If there is no more

series edges to be compacted, then the algorithm start to

traverse the graph aiming the compaction of edges

associated in parallel. When there are no more edges in

parallel to be compacted, the algorithm is started again

looking for series compaction. This iterative process

stops when there is no more possibility of series and

parallel compaction.

The graph compression steps are demonstrated in

Fig.1. The initial graph is shown in Fig.1.a. The process

begins by searching adjacent edges connected in series in

sub-graphs. In this example, the first sets of edges to be

compacted are connected to the terminal node T0. For

instance, the edges “!F”, “!E” and “!C” are associated in

series, and can be compacted to a single edge.

Therefore, the sub-graph composed by these edges is

replaced by a new edge that actually is a list of edges. In

this case, this new edge is referred as the product

“!F.!E.!C”. In a similar way, the edges “F.E.C” and

“D.B.A” are created. This process is depicted in Fig.1.b.

After perform the first iteration of series compaction,

the algorithm looks for parallel associations. In Fig.1.b,

there are two sub-graphs in parallel. As shown in

Fig.1.c, the edges “!F.!E.!C” and “F.E.C” can be

compacted in a single edge that is referred as “!F.!E.!C

+ F.E.C”. At this point, there are no more edges in

parallel. The algorithm is restarted in order to look for

edges associated in series. Hence, the graph in Fig.1.c

can be reduced to the one in Fig.1.d. The final graph has

a single edge that represents the Boolean function

expressed by “((!F.!E.!C+F.E.C).D.B.A)”.

Using graph compaction it is possible to identify

bridge connections. Accordingly to [3], the minimal

number of transistors to implement a Boolean function

cannot be achieved by purely series-parallel networks. As

an alternative, “bridge” transistor networks can be used.

In this case, bridge connections are compacted through

the compaction algorithm. Therefore, the final graph

will have at least five edges on its construction (the

minimal construction of a bridge network).

T0 T1

!F

F

!E

E

!C

C

D B A

a)

T0 T1

!F.!E.!C

F.E.C

D B A

b)

T0 T1(!F.!E.!C+F.E.C) D.A.B

c)

T0 T1(!F.!E.!C+F.E.C) .D.A.B

d)

Figure1: Steps de Algorithm

The main objective of our method is to extract a

Boolean expression from a graph. When a graph can be

compacted into a single edge (meaning that there are

only series-parallel connections), the Boolean expression

is naturally achieved. That is not the case of bridge

networks that requires a more sophisticated algorithm to

construct the expression. An example of bridge network

compaction can be seen in Fig.2. and Fig.3.

T0 T1

A

!A

B

!B

!C
!D

EG

D

Figure 2: Initial Graph of Type Bridge.

T0 T1

!D

EG

D
!A.!B

A.B.!C

Figure 3: Graph Type Bridge Compacted.

Considering the graph compaction of a bridge

network, it is necessary to roam it in order to generate a

Boolean expression that represents the whole graph. This

final procedure is done using an adjacency matrix to

represent the compacted graph. The expression can be

extracted applying a depth-first-search algorithm on the

adjacency matrix. The search starts on a terminal node

and ends on another. Fig.4 shows the searches on the

adjacency matrix that represents the compacted graph of

Fig.3.

0 1 2 3 4

0 A.B.!C !A.!B

1 E

2 A.B.!C G !D

3 !A.!B G D

4 E !D D

Stack

4

3

2

0

a)

0 1 2 3 4

0 A.B.!C !A.!B

1 E

2 A.B.!C G !D

3 !A.!B G D

4 E !D D

Stack

4

2

0

b)

0 1 2 3 4

0 A.B.!C !A.!B

1 E

2 A.B.!C G !D

3 !A.!B G D

4 E !D D

Stack

4

2

3

0

c)

0 1 2 3 4

0 A.B.!C !A.!B

1 E

2 A.B.!C G !D

3 !A.!B G D

4 E !D D

Stack

4

3

0

d)

Figure 4: Paths generated from the graph traversal.

The depth-first-search starts on the terminal node

“T0”, i.e., on the index zero of the adjacency matrix. We

use a stack to keep a traveled path. This stack stores the

indexes of the adjacency matrix which represent nodes of

a graph. Starting from the row zero, the algorithm looks

for the first that represent a graph edge. At this point,

column „2‟, which represents the edge "A.B.!C", is the

first choice. Therefore, the index „2‟ is added into the

stack. Through a recursive routine, the row „2‟ is the

next point for search. In this row, the first column that

indicates an edge is the column „0‟. However, this row

was already visited. This way, the next edge to be

crossed to is the edge “G”. Therefore, the next row is the

one with index „3‟. This process is repeated through the

interconnected vertices, and it stops when the other

terminal vertex is reached. In the examples of fig. 4, the

index „4‟ represents the terminal node “T0”. At the end,

there will be a stack representing a path through both

terminals.

Each constructed path symbolizes an expression

which is a product of the edges expressions. In the

example of Fig. 4, there are four resulting paths. A sum

of the path products results in a Boolean expression that

represents whole transistor network. Some products in a

path are equivalent to products of other paths. Hence,

associative techniques can be applied to reduce the

number of literals of the final expression. In this

example, the result of this process is the equation below:

A.B.!C.(!D.E+G.D.E)+!A.!B.(G.!D.E+D.E)

The Prefuse tool kit [4] was strongly used to debug

the Soptimizer tool. This library provides a graphical

framework for graph visualization. Later, we decided to

provide a visual output to the user. An example of visual

output is shown in Fig.5.

Figure 5: Soptimizer graphical interface.

4. EXPERIMENTAL RESULTS

Since the Soptimizer tool is implemented in Java

language, the proposed algorithm was implemented

through a set of Java classes that are already integrated

into the tool and the Prefuse tool kit, which is used to

visualize all generated graphs.

In order to validate the expressions generated by our

algorithm, we have run a set of experiments on a

computer with a Core2Duo processor and 4GB of RAM,

running Ubuntu 10.10 - 64-bit. The first experiment

validated 10 functions randomly chosen from the

complete set of the 7-input pClass library. The second

experiment has validated all 3,982 functions of the 4-

input pClass functions library as benchmark.

All expressions were factorized through the

Soptimizer tool and the resultant expressions were

generated through the proposed algorithm in

approximately 8 minutes. Since the expressions

generated by our algorithm are equivalent to the input

expressions, we assume that our algorithm is correct.

Notice that it also validates the Soptimizer tool results.

This tool manipulates a graph constructed from an

expression. Since the expressions generated from graphs

resultant from the Soptimizer are equivalent to the

original expressions, this means that the methods

implemented by the tool are also correct.

Tab.1 presents a comparison of the SIS [5]

factorization procedure and our method associated to the

Soptimizer tool, considering a sub set of 10 functions of

the 4-input pClass library. The second column shows the

number of literals of each SOP that represents each

function. The third column shows the number of literals

of the factored forms generated by the SIS tool. The

fourth column presents the number literals achieved by

the Soptimizer. The last one presents the number of

literals achieved by our algorithm.
Tab.1 – Literals count of factored forms

Function

literals

 in the

 SOP

#literals

SIS

#literals

Soptimizer

#literals

Soptimizer

Plus

87 14 11 10 10

100 7 6 6 6

126 12 9 9 9

231 8 7 6 9

393 13 10 8 8

594 11 9 8 8

1183 13 10 8 8

2284 16 13 12 12

3622 12 10 9 9

3635 22 15 13 36

In the second experiment, all 4-input functions from

pClass library have been synthesized using the

Soptimizer tool. Furthermore, we have computed the

number of transistors (number of edges) from the

resulting graphs and the number of literals from the

expressions generated by our method. As expected, in

2,192 functions (from 3,982), the numbers are the same

when the resulting graph represents a series-parallel

transistor network. However, when the resulting graph is

a bridge network, the expressions have a higher number

since the Boolean equations are expressed through the

operators AND and OR that denotes series and parallel

associations, respectively.

Besides, we have also compared our algorithm to

factorization method implemented on SIS using the same

pClass library. Our algorithm has achieved better results

in a set of 107 functions. In 2,011 others cases, the

results are the same. In the other 1,864, the SIS tool

achieved better results. Currently, the Soptimizer tool is

not able to eliminate non-sensitizable paths in a

transistor network. Even though the resultant graphs are

Boolean equivalent to the original expressions, when the

Soptimizer manipulates the initial graph, it may

introduce false paths in the network. It is demonstrated

in Fig.6. The path going through edges “A”, “G” and

“!A” is not sensitizable given that the variable “A”

appears in both polarities. Our method generates the

expression “A.(G.!A+D) + !B(G.D+!A)”, while it could

be reduced to “A.D+!B(G.D+!A)”.

T0 T1

A

!A!B

G

D

Figure 6: Example of a non-sensitizable path.

5. CONCLUSIONS AND FUTURE WORKS

This paper presented a method to extract Boolean

expressions from graphs. This method fills a gap

between Soptimizer and other tools that uses expression

as input. Our algorithm is able to generate expression for

series-parallel and bridge transistor networks represented

by graphs. Boolean expressions do not have an operator

to denote bridge connections. In this way, when

expressed using the primitive operators, a lot of

redundancies are added into the expression. Our

algorithm is able to handle this problem, leading to

optimal solutions. As future work we intent to eliminate

non-sensitized paths of the transistor networks generated

by the Soptimizer. It can be done by using Boolean

methods during the graph manipulation. This way, we

can reduce the transistor count and achieve smaller

expressions in terms of literals.

6. REFERENCES

[1] BRAYTON, R. K. Factoring logic functions. IBM J. Res.

Dev. 31, 2 (1987), 187- 198.

[2] MINTZ, A. and Golumbic, M. C. Factoring boolean

functions using graph partitioning. Discrete Appl. Math. 149,

1-3 (2005), 131-153.

[3] ZHU, J. et al. On the Optimization of MOS Circuits. IEEE

Transactions on Circuits and Systems: Fundamental Theory

and Applications. (1993), 412-422.

[4] PREFUSE.ORG. The Prefuse Visualization Toolkit.

[Online] Avaliable: http://prefuse.org/ [Acessed: Mar. 25,

2010].

[5] SENTOVICH, E. et al. SIS: A system for sequential circuit

synthesis. Tech.Rep. UCB/ERL M92/41. UC Berkeley,

Berkeley. (1992).

