
DESIGN OF AN INTEGRATED ENVIRONMENT FOR A DIDACTIC PROCESSOR 
 

Valter C. Filho 
 

UFERSA 

Leonardo A. Casillo 
 

UFERSA 

Sílvio R. Fernandes 
 

UFERSA 

Argemiro S. Neto 
 

UFERSA
 

ABSTRACT 
 
This paper presents the design and implementation of 
an integrated environment designed for educational 
purposes RISC architectures. This environment includes a 
VHDL description of the SIC (Simplified Instructional 
Computer) processor and a software with a set of useful 
tools for the executable programs development for that 
processor. The software tools allow assembling, linking, 
loading and simulating the execution of programs. 
Additionally, this environment does an automatic 
generation of a file memory initialization with the 
executable program that can be used in a FPGA. 
 
 

1. INTRODUCTION 
 
There are many disciplines in undergraduate computing 
that involves the study of architectural details of 
processors and the system software related to them. In 
this study two ideas can be used: real processors 
architectures or simulators. 

The real architectures has several tools that assist in 
developing and debugging applications, however studying 
every architecture’s detail can be extremely complex.  
Simulators, on the other hand, can provide more 
abstraction of the fine architecture’s details, but on the 
other, can reduce the accuracy of execution time, chip 
area occupied on or power consumption. 

Alternatively arise didactic architectures, in order to 
address the key theoretical concepts related to these 
disciplines. The architecture SIC was proposed by Beck 
[3] for the study of system software, however it is a 
virtual architecture. Therefore, we propose a VHDL 
description of this architecture and additionally 
implement its system software, creating an integrated 
educational environment. 

Section 2 presents the methodology adopted for the 
description of the architecture. Section 3 describes the 
details of the SIC processor. Section 4 presents the 
software with the simulation tools and application 
development, section 5 presents the results and section 6 
the conclusions and future works. 
 

2. METHODOLOGY 
 
The design of an architecture basically involves the 
following topics: relate characteristics of the target 
processor, describe the microprograms [6] by using 
flowcharts, data path design, the state machine 
description, description in HDL and processor’s testing 

through simulation. This is an own methodology [9] and 
can be used for the development of any architecture. 

 
2.1. Characteristics of the Target Processor 
 

Initially we must consider the characteristics of the 
target architecture. Thus, we have the understanding of 
which components have the processor internally. At this 
stage, components such as registers, arithmetic logic unit, 
address bus size, data bus size, control bits, among others, 
should be considered and described with their 
specifications. 
 
2.2. Describing Microprograms  
 

Using flowcharts, we can describe these 
microprograms to recognize which processor’s structures 
are used for performing the instruction set and in what 
sequence the tasks are performed. 

For each instruction, there are several flowcharts 
covering some aspects related to its execution, for 
example: fetch, decode, execution and storage. 
 
2.3. Designing Datapath 
 

The completion of the flowcharts is necessary for 
determining the data path configuration. Each interaction 
observed in the flowchart is considered to determine what 
logical structures are necessary for that operation. By 
uniting all the structures and excluding redundancies, one 
can possibly obtain the data path. The aim is to have a 
unique, complete and logical structure only capable of 
performing all the operations described by microprograms 
within the processor. 

Figure 1 - Datapath of the SIC 

 
 
 
 



2.4. Compiling the State Machine  
 

The development of a state machine (FSM) is required 
to describe the behavior of the control unit. This FSM 
describes what actions will be taken and what time they 
should be executed. 

It is based on flowcharts and data path that one can 
describe the state machine to model the logical treatment 
of the architecture’s instructions. In Figure 2 - Simplified 
State Machine we can see a simplified example of a state 
machine. Each state, except the states of RESET, ERROR 
and END OF PROGRAM, should be developed, resulting 
in an even greater FSM. 

Figure 2 - Simplified State Machine 

 
 
2.5. Describing Hardware 
 

For the description of the processor, you should begin 
production of smaller components, combining them into 
larger structures. Initially, we describe the components of 
the operating unit of the processor (register, multiplexer, 
etc.). At the end you have enough parts to combine them 
in a unique data path. The control unit, by contrast, is an 
extra component part and it will contain all states of the 
FSM. After completion of the control unit and data path, 
the next step is to integrate these two structures into a 
single entity, the target processor. 
 
2.6. Simulation and Test  
 

This step is necessary to describe the main memory 
and create a superior entity that connects this new 
component to the processor. In memory, a machine 
language program must be loaded and a test file for the 
simulation of the description proposed. This program 
must use all the instructions in the ISA. The goal is to 
scan the whole state machine and empty the possibilities 
of system failure. 
 

3. SIC PROCESSOR 
 
3.1. Characteristics 
 
The target processor considered in this work is the SIC - 
Simplified Instructional Computer [3]. This didactic 

processor consists of 5 internal registers (A, X, L, PC and 
SW) all 24-bit and with well specified functions. The A 
register is used as the operator's work, X is commonly 
used in indexing operations, the L is used for diversion 
and return of subroutines, the PC is the program counter 
and SW is the status word which contains status 
information.  

Although main memory is addressed by a word of 20 
bits, 12 bits are used only addressing 4096 bytes. SIC has 
two types of addressing: indexed and direct. The word 
size is 24 bits and is organized in memory using the big 
Indian scheme. 

An important SIC’s feature is the address and data bus 
is common between the memory devices and I/O. 
However the address space of the main memory is 
different from the one used for input and output devices. 
Thus, an I/O unit is necessary to connect the devices to 
the processor. 

Due to lack of available interrupts in SIC natively, it’s 
considered a monoprogramable processor. Thus, a switch 
of tasks is not possible to be executed by the processor 
through an operating system. 

The Instruction Set Architecture (ISA) consists of 26 
instructions that perform basic operations, which 
characterizes it as RISC (Reduced Instruction Set 
Computer) processor. According to Table 1, the 
instructions were divided into arithmetic, logical, 
comparison, diversion, load, unload and I/O. This 
distribution is critical for the proper identification of the 
steps and location of results obtained in each processing 
step: fetch, decode, execution and storage. 

Table 1 - SIC's Instruction Set Architecture. 

Category Instruction Efect 

Arithmetic 

 ADD m A<-A+m..m+2 

SUB m A<-A-(m...m+2) 

MUL m A<-(A)*(m...m+2) 

DIV m A<-(A)/(m...m+2) 

Logic 
OR m A<-(A)|(m...m+2) 

AND m A<- A&m...m+2 

Comparison 
COMP m (A):(m...m+2), CC 

TIX m X<-(X)+1; (X):(m...m+2) 

Diversion 

JSUB m L<-(PC); PC<-m 

RSUB PC<-L 

J m PC<-m 

JEQ m PC<-m if CC is = 

JGT m PC<-m if CC is > 

JLT m PC<-m if CC is < 

Load 

LDA m A<-(m...m+2) 

LDCH m A [LSB] <- (m) 

LDL m L <- (m ... M+2) 

LDX m X <- (m ... M+2) 

Unload 

STA m m...m+2 <-A 

STCH m m...m+2 <-A [LSB] 

STL m m...m+2 <- L 

STSW m m...m+2 <- SW 

STX m m...m+2 <- X 

I/O 

TD m Test of device. 

WD m Device m <- (A) [LSB] 

RD m A [LSB] <- Device m 

 



3.2. Hardware Describing 
 

SIC was designed based on components. Initially, 
basic parts of architecture were described and tested as 
registers, counters, multiplexers, demultiplexers, clock 
dividers and arithmetic logic unit. In a second step these 
components have been integrated into a structure called 
the data path. Here we have the basic structure for 
performing the operations available on the ISA. At this 
point, we must describe the control unit, responsible for 
coordinating the use of the data path structure. 

The processor’s description finishes in an entity that 
performs the connections between the control unit and 
data path. It was then described an entity representing the 
memory with the loaded initialization file. This file is the 
object code for program’s execution, described in MIF 
format (Memory Initialization File). 

To test and validate the architecture we used the DE2 
board education as an interface I/O. For this we 
developed an LCD controller, responsible for mapping 
the characters received in their corresponding LCD 
addresses sent by the processor. 

 
4. SIMULATOR ENVIROMMENT 

 
4.1. Software 

 
The simulator combines all the tools developed in an 
environment with full graphical interface, where the user 
can set up object programs. Figure 3 shows the software 
interface. 

Figure 3 – Simulator interface. 

 
 
This software simulator was developed in C #, based 

on the technologies .NET Framework 4 and is compatible 
only with Windows operating system, in Windows Vista 
and later versions. 

The user can choose between assembling standard 
object SIC or SIC/XE (extended version). The file to be 
assembled should be in the format ".asm" and be 
compatible with the syntax of assembly language of the 
SIC. 

The assembled files will be saved with the name of 
the program contained in the assembly and not the name 
of the file read. If there are sections in the program, each 

section is saved in a different file with the name of its 
section. 

There is also the option to save the original file with 
the assembly code produced by the assembler. In this 
case, the filename will be "NAME_OF_THE_ 
PROGRAM.asm." The software also allows the automatic 
generation of a file in MIF (Memory Initialization File) 
format with the assembled program. 
 
4.2. Sample Program 

 
The sample program for demonstration of the 

architecture is described as shown in Figure 4. This 
program in three-address code has the function to write 
the string “Hello World” on the top line of the LCD. 

Figure 4 – SIC’s sample code. 

 
 

4.3. Generating MIF 
 

After submitting the assembly code, the software 
generates the object file, which can be used to simulate 
the processor SIC execution. You can also generate the 
memory initialization file with extension “.mif", as shown 
in Figure 5. This could be included in the VHDL project 
of the processor and used as an application that initializes 
the memory of the FPGA. 

Figure 5 - .MIF generated by the simulator. 

 



 
5. RESULTS 

 
To validate the proposed environment in this article, it 
was developed an example of a simple "Hello World" as 
described in Figure 4, which was submitted to the 
software to generate the equivalent object code and the 
file format “.mif”, as shown in Figure 5. This file was 
compiled with the project and downloaded to the DE2 
board, so the message "Hello World" appears on the LCD 
display, as shown in Figure 6. The same figure shows the 
value "51C0000F" in the 7-segments display, meaning 
end of program. 

Figure 6 - Hello World in the DE2 Board 

 
 

The project’s time analysis undertaken by the Quartus 
II indicates that the maximum operation frequency is 
76.07 MHz. Another strength of this study is the low 
consumption of logic gates and registers for the 
development of this processor. The number of registers 
used was 601, using only 930 logic gates, that means 3% 
of the total available on the chip EP2C35F672C6 of the 
Cyclone II family from the manufacturer Altera. This 
result underscores the low consumption of chip area and, 
probably, low power. 
 

6. CONCLUSION AND FUTURE WORKS 
 
This paper presented an integrated software/hardware 
environment for a didactic RISC processor, the SIC. In 
this environment is possible to assemble, link, load, 
simulate the execution and generate a file in “.mif” 
format, an application using the assembly language syntax 
of the SIC. The methodology of development adopted to 
design and describe the processor in VHDL was also 
presented. 

A good result of this methodology is a highly modular 
project that can be adapted or incremented with new 
instructions more easily and directly. It’s also easy and 
intuitive to identify possible errors and inconsistencies in 
the program loaded into memory and in their own state 
machine that describes the control unit. Besides these 
points, we can note that the amount of documentation 

created in the process is complete and covers all the 
necessary aspects for identifying inconsistencies in the 
testing phase. 

The synthesis results show the small area occupied by 
the processor chip and the maximum frequency of 
operation. 

For validation we used the DE2 education board, 
which demanded the development of an LCD display 
controller used as standard output. 

For further work, the SIC processor will be expanded 
to SIC/XE processor, more complete, 
multiprogrammable, enables interrupts, including a 
processor pipeline, development of a C compiler, 
complementing the simulation environment and providing 
the development of libraries and softwares for this 
platform. Other I/O drivers will be developed in order to 
communicate the processor with other interfaces available 
on the DE2 board. 
 

7. REFERENCES 
 
[1] Aho, Alfred V., R. Sethi, Compiladores: princípios, técnicas 
e ferramentas, Addison Wesley, São Paulo, 2008. 
 
[2] Amore, Robert d’. VHDL: descrição e síntese de circuitos 
digitais, LTC, Rio de Janeiro, 2005. 
 
[3] Beck, Leland L., System Software: an introduction to 
systems programming. Addison Wesley Longman, 1997. 
 
[4] Montenegro, Toni F., A. Girardi, “Implementação em 
VHDL do Processador Educacional BIP I,” Iberchip XV 
Workshop, Buenos Aires, 2009.  
 
[5] T. F. Oliveira, I. S. Silva, “Cabare: An Educational 
Reconfigurable General Purpose Processor,” Sforum, Natal, 
2009. 
 
[6] Stallings, W., Arquitetura e Organização de Computadores,  
Prentice Hall, Rio de Janeiro, 2008. 
 
[7] Tanenbaum, A. S., Sistemas Operacionais Modernos, 
Prentice Hall, Rio de Janeiro, 2007. 
 
[8] Tocci, R. J., N. S. Widmer, Sistemas Digitais: Princípios e 
Aplicações, Prentice Hall, Rio de Janeiro, 2007. 
 
[9] Costa, R. V., L. A. Casillo, S. F. Araújo, J. P. Pereira, 
“Metodologia para Projeto de um Processador RISC Didático,” 
WTCC 2011, Mossoró, 2011. 


