
POWER CONSUMPTION SYSTEM-LEVEL MODELING OF A SYSTEM ON CHIP

Heider M. G. Madureira, José Edil G. de Medeiros, Gilmar S. Beserra, José C. da Costa

Department of Electrical Engineering
University of Brasília

Brasília, Brazil
{heider, joseedil, camargo}@unb.br, gilmar@kth.se

ABSTRACT

This work describes the modeling of a SoC using
SystemC and TLM. The SoC is composed of a MIPS-
based processor, a memory, a bus, a timer, an AES
module and a battery. The model is intended to allow
early SoC simulation and power estimation. The battery
module estimates the energy consumption of the SoC by
computing the amount of electrical charge used by each
block. A case study presenting a comparison between
the AES algorithm running as embedded software and
on the AES hardware model is made and energy
considerations for both cases are presented.

Index Terms — SoC, systemC, energy consumption.

1. INTRODUCTION

Abstraction is a powerful technique for the design and
implementation of complex systems. It allows to tackle
complexity by first hiding unnecessary details and then
working them out later. Different amounts of details
correspond to different levels of abstraction. Design
models at each level of abstraction provide the basis for
applying analysis, synthesis or verification techniques [1].

The full exploitation of silicon capabilities is limited
by the tremendous design complexity to be addressed
within very short project schedule. This limiting factor has
created a productivity gap and pushed the need for altering
the classic design flow into prominence. Traditional
design methods, in which systems are designed directly at
the low hardware (HW) or software (SW) levels, are
quickly becoming infeasible. One of the most commonly-
accepted solutions for closing the productivity gap as
proposed by all major semiconductor roadmaps is to raise
the level of abstraction in the design process [2].

Modeling and high level simulations allow the design
team to have insights about system performance and
functionality while keeping low the effort, in comparison
with the RT level, made in order to acquire the model.
This new approach avoids modifications in late stages of
the design reducing the cost and risk of the projects. Once
a high level model is working it can be used as an early
software development platform and as a golden model to

the hardware team.
As computing becomes ubiquitous, battery-powered

devices become more common and early power estimation
becomes as important as the system performance.
Creating models that allow the observation of system
architecture, performance as well as power consumption
provides more insights about such battery-powered
systems.

In this paper, a SoC model is implemented using
SystemC and Transaction Level Modeling (TLM). A
MIPS Instruction Set Simulator was generated by ArchC
[3] and modified in order to handle interrupts and simulate
different energy-saving modes, such as low power and
standby. The strategy adopted for energy estimation is
based on the modules datasheet, IP or characterization
information and all the energy computation is made in a
separate block. With this approach, code reuse becomes
very easy.

This paper is organized as follows: Section 2 presents
some related works. Section 3 describes the SoC model
and its implementation. Section 4 presents a case study as
AES (Advanced Encryption Standard) algorithm runs both
on the AES hardware model and as embedded software.
Section 5 presents this work conclusions and future
works.

2. RELATED WORKS

In [4], the system performance is based on high-level
simulation and depends on the actions the processor may
execute. The physical parameters are obtained from the
capacitance and delay characteristics of a given
technology. In that work only the processor is modeled. In
the present work other blocks are modeled in a way to
study how the interaction among different components
affect overall system energy consumption.

In [5], the energy modeling is accomplished by
splitting the power profile into states and the information
of such states is obtained from datasheets and IP
documentation. In that work, the power estimation
computation is mixed with the block description. In the
present work the energy estimation block is separate from
the behavior allowing easy code reuse.

3. SOC MODEL AND IMPLEMENTATION

The battery was implemented as a separated module to
estimate the system energy consumption. Figure 1 shows
its behavior, where t1 is the moment in which the battery
runs out of charge.

Once it is assumed that the output voltage is constant
as long as there is charge in the battery, it can be modeled
as an electrical charge deposit. During elaboration phase,
the battery is created with an initial charge given by the
user. Then, it computes the remaining charge by
subtracting the consumption from the modules and storing
the new value as shown in Equation 1 where k represents
a given module.

Qt t remaining=Qt remaining−I k⋅ t k (1)

In Equation 1, I is the current consumption and Δt is
the time draining current from the battery, both taken from
a given module and Q(t) is the remaining charge of the
battery in instant t. For the processor module, for example,
Icpu is the processor current consumption and Δtcpu is the
instruction time. As many instructions are executed, the
average consumption tends to the value available in the
datasheet of the component. For the memory module, Imem

is the memory current consumption and Δtmem is the access
time. Once the battery runs out of charge, it generates an
event that stops all the threads running on that SoC, i.e,
the processor, timer and AES, turning down the whole
SoC.

The communication among the battery and the other
modules is performed by using a TLM bidirectional
blocking interface and its transport method.

Figure 2 shows the SoC components that were
modeled in this work, which are processor, bus, memory,
timer, AES and battery.

The processor acts as the system master, i.e., it is the
only module that can initiate the communication with the
other modules through the bus. An interrupt handling
mechanism was implemented in order to increase the
efficiency of the processor when dealing with peripheral
modules. In addition, each module implements memory-
mapped registers to facilitate the data exchange between
the processor and the peripherals connected to the bus.

The processor modeling was accomplished with the
support of the architecture description language ArchC[3].
A 32-bit RISC architecture with a MIPS-based instruction
set was chosen in order to obtain a low-power high-
efficiency processor and take advantage of the existing
toolchain. The code was customized, since the interrupt

handling implementation demanded the addition of an
additional bank of registers [6]. A more realistic timing
annotation and different energy-saving modes were also
implemented. The whole system was designed using TLM
1.0 to comply with the protocols inherited from by ArchC
libraries.

The memory was implemented as an array of pointers,
instead of a thread, as it only responds to the processor's
reading and writing commands through the bus, storing
data in case of writing operations. Because the MIPS
architecture works with data organized in bytes, the
memory module was implemented with 8-bit data.

The system bus was modeled as an interconnection
structure that receives all the processor transactions, sets
the destination address according to the system memory
map and forwards the transactions to the appropriate
peripheral. The transactions responses are sent back to the
processor. This approach allows the inclusion of other
blocks into the system by simply adding a port to the bus
and an address range to the peripheral.

Figure 3 shows the time diagram for a memory read
operation. The processor starts the communication
through the bus and the memory answers after the access
time Δt.

A timer was modeled in order to generate periodic
events in the system. This module implements a thread
that generates transactions periodically at its output port,
which is connected to the processor interrupt port. The
periodicity of the interrupts can be defined by the
embedded software.

The AES module was implemented as a thread that
waits for an event that happens every time the processor
writes a given word in a given AES control register. Once
this event happens, the AES module runs the algorithm on
the words written in key registers and in plain text

Figure 2: Modeled SoC.

Figure 3: Time diagram for a read operation.

Figure 1: Battery modeled behavior.

registers. Finally, it writes the cyphered text in the output
registers.

The battery was modeled as a SystemC block and it
contains the information about the remaining charge
available for the SoC, the current consumption
information (Ik) and time draining current (Δtk) of each
modeled blocks. Modeling the battery as a separate block
reduces the modifications on the other modules allowing
code reuse.

In this work the operations are performed
instantaneously and the amount of time needed for the
operation's execution is added afterwards as shown in
Figure 4.

Figure 4 shows the time diagram for a read operation
taking into account the battery as it is modeled in this
work. When the processor performs a memory read
operation, it also initiates a transaction by calling the
transport method of the battery. Then, the battery module
subtracts the charge consumption from the remaining
value using the processor consumption parameters Icpu and
Δtcpu as in Equation 1. When the bus sends data to the
memory, the transport method of the battery is called
again, but since this time the bus initiated the transaction,
the battery subtracts the charge consumption from the
remaining value using the bus consumption parameters.

The flow continues with the memory answering the
read command. In Figure 4, the white arrows represent
energy expense, i.e, subtractions in the remaining charge
of the battery. These white arrows are instantaneous in
simulation.

The battery module was developed to be easily
connected to any module after simple modifications,
allowing easy code reuse. It can be done by adding a new
port in the module and implementing the transport method
call to the battery when the module is used. If the new
module has a thread, it can be done by stopping it when
the event generated by the battery exhausts .

All other modifications are made in the battery module
itself. This limits the modifications on more complex
blocks allowing code reuse and power consumption
estimation.

4. CASE STUDY: AES

In order to evaluate the power consumption on the

modeled system, a case study was performed. The AES
application was chosen in order to make a comparison
between the algorithm running on the AES hardware
model and as embedded software. Performance and
consumption issues can also be observed.

Both hardware model and software implement AES
128 and the data presented here is based on the following
input [7]:

key: 0x000102030405060708090A0B0C0D0E0F

plain text:
0x00112233445566778899AABBCCDDEEFF

cyphered text:
0x69C4E0D86A7B0430D8CDB78070b4C55A

Both simulations run the algorithm 10 times with the
same key and plain text in order to spend a more
observable amount of charge and in both simulations the
initial charge was 2500mAh (9 Coulomb) a typical value
for rechargeable batteries.

In order to model the power consumption and
performance of the system, parameters based on actual
hardware were loaded into the model. The used
parameters are shown in Table 1.
Table 1: Hardware parameters used for simulation

Current consumption
[mA]

Time draining current
from battery

MIPS[8] 11,6 62,5 ns

Memory[9] 33 85 ns

Timer[10] 0,1 Whenever the circuit is
working

AES[11] 61,1 110 ns

The data may be obtained from datasheet analysis and
papers, but it fits particularly well to IPs. Once an IP
library is available, these informations about power
consumption and time are very detailed allowing early
system simulation, software development and power
estimation.

4.1. AES IMPLEMENTED IN SOFTWARE

The algorithm was implemented in software and cross-
compiled to MIPS architecture so that the algorithm runs
on the MIPS processor without the use of the AES
hardware module.

After the end of the simulation, an energy log is
available. The energy consumption data shown in this log
is summarized in Table 2.

The processor executed 1975000 instructions and the
simulator took 3.2 seconds in a AMD Turion 64 X2 with
2GB. Since the bus was modeled as consuming no energy
and the timer and AES modules are not used in this
program, these modules consumed no energy, while the
memory consumes more than 87% of the total.

This modeling approach provides information to
analyze the most inefficient blocks. Choosing a memory
that consumes less power would have a larger impact on

Figure 4: Time diagram for read operation with battery.

the global consumption than choosing another processor.

4.2. AES IMPLEMENTED AS A HARDWARE
MODULE

AES algorithm was also implemented as a hardware
module connected to the bus. Another C program was
created to write the key and the plain text into the AES
module registers, read the cyphered text and control the
timer interrupts. The timer was configured to interrupt the
MIPS processor in every 15μs. This large interval was
chosen in order to allow the processor to be able to handle
the interrupts. As the processor goes to standby mode
while it waits for interrupt calls, no electrical charge is
spent by it as the AES hardware block works.

Similarly to the previous simulation, an energy log is
created after the application program terminates. The
results are also summarized in Table 2.

In this simulation, the processor executed 1485
instructions and the simulator took only 0.02 second to
accomplish the same 10 cypher operations. It can be
noticed that once again the memory is responsible for
most of the power consumption in this simulation.

Some known performance issues that validate the
simulations themselves can be noticed by comparing these
two simulations, as shown in Table 2. The ASICs are more
efficient than implementing the algorithms by software.
This can be observed by comparing the total charge
consumed between the simulations. Using the AES
hardware module the charge consumption was almost 800
times smaller than AES in software for the modeled
components and under the case studies conditions. This
efficiency gain changes with the applications running. If
larger intervals between the interrupts were used in the 2nd

simulation, the total energy consumed would increase
because the timer would be used longer.

In both cases, though, the amount of charge used to
perform the operations is very small compared with the
initial charge as would be expected for small applications
such as the described here.

Table 2: Energy consumed by SoC modules
AES Software AES Hardware

uC %Total uC %Total

MIPS 1,431.87 12.21 1.0759 6.92

Bus 0 0 0 0

AES 0 0 0.06721 0.43

Timer 0 0 0.009 0.06

Memory 10,292.9 87.79 14.3925 92.59

TOTAL 11,724.8 100 15.5446 100

5. CONCLUSION AND FUTURE WORK

This work presents a SystemC/TLM model of a battery
powered system-on-chip. The battery module was created

to be flexible and easily connected with any other
SystemC module. The implemented energy consumption
model is flexible and easily adaptable in case a new
modeled hardware needs to be added to the SoC.

A case study were made to evaluate the behavior of the
model with AES algorithm running as embedded software
and on the AES hardware model. The simulations show
that hardware modules are more energy efficient than
software implementations, as expected.

As the approach described here is general, future
works include the addition of a transceiver module and
simulation of a full wireless sensor network with battery
powered nodes.

6. REFERENCES

[1]: Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer,
Gunar Schirner, Embedded System Design: Modeling,
Synthesis and Verification, Springer, ISBN
9781441905031, 2009;

[2]: Frank Ghenassia (Editor), Transaction-Level
Modeling With SystemC: TLM Concepts and
Applications for Embedded Systems, Springer, ISBN
0387262326, 2005;

[3]: Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu,
Guido Araujo, Cristiano Araujo and Edna Barros, The
ArchC Architecture Description Language and Tools,
International Journal of Parallel Programming, Volume
33, Number 5, Pages 453-484, Springer, 2005;

[4]: Claudio Talarico, Min-sung Koh, Esteban Rodriguez-
Marek, System Level Performance Assessment of SoC
Processors with SystemC, 14th Annual IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems, Tucson, USA, 2007;

[5]: Hugo Lebreton, Pascal Vivet, Power Modeling in
SystemC at Transaction Level, Application to a DVFS
architecture, IEEE Computer Society Annual Symposium
on VLSI, Montpellier, France, 2008;

[6]: Gilmar S. Beserra, José E. G. de Medeiros, Heider
Marconi G. Madureira, Juan F. Eusse, João L. de C.
Carneiro, Ricardo P. Jacobi, José C. da Costa, System-
level Modeling of a Reconfigurable Systemon Chip for
Wireless Sensor Networks Applications, International
Conference on Intelligent and Advanced Systems, Kuala
Lumpur, Malaysia, 2010;

[7]: Federal Information Processing Standards, Annoucing
the Advanced Encryption Standard (AES), 2001;

[8]: MIPS Technologies, MIPS 32 4k, ,
http://www.mips.com/products/cores/32-64-bit-
cores/mips32-4k;

[9]: Hitachi LTD., Datasheet HM62256A-8;

[10]: National Semiconductors, Datasheet LMC 555;

[11]: Lan Liu and David Luke, Implementation of AES as
a CMOS Core, Canadian Conference on Electrical and
Computer Engineering, Montreal, Canada,2003;

	1. Introduction
	2. Related Works
	3. SoC Model and implementation
	4. Case study: aes
	4.1. AES IMPLEMENTED IN SOFTWARE
	4.2. AES IMPLEMENTED AS A HARDWARE MODULE

	5. conclusion and future work
	6. References

