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ABSTRACT 

In this work, a proposal for a 2D numerical modeling 

methodology of Hall Effect semiconductor devices is presented, 

employing linear finite-differences. Specific optimization of the 

device’s geometry and construction are being considered for 

improving sensibility in the future implementation of an 

Educational Integrated Circuit, using commercial CMOS 

fabrication processes, and the possible integration of other test 

structures, such as the Corbino disk. 
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1. INTRODUCTION 
Currently, there is a technological demand for the development of 

integrated sensors that detect magnetic fields. The Hall Effect 

sensor is commonly used because it is possible to build sensors 

with high quality through standardized manufacturing processes. 

Typically, a Hall sensor may be constructed in three common 

types of geometries: Rectangular, Greek-cross and Diamond-

shaped, as shown in Figure 1 [1]. Furthermore, these geometries 

are easily integrated in currently available CMOS processes.  

 

 
Figure 1. a)Rectangular, b)Greek-cross, c)Diamond. 
 

 

Basically, a Hall Effect sensor may be represented as in Figure 2, 

in a 3D Cartesian frame of reference, where a semiconducting 

rectangular slab is exposed to an externally applied magnetic 

field, along the z-axis. The slab has length L and width W and is 

externally connected by electrodes to a voltage source and a 

voltage meter. Assuming that a voltage is applied to the ends of 

the slab along the x-dimension and a drift current is generated in 

this same direction, a Lorentz force, resulting from interaction of 

the moving charges inside the slab with the magnetic field, 

generates a potential difference VH (Hall Potential) along the y-

axis [2]. 

 
Figure 2. Hall Sensor. 

 

This phenomenon was accidentally discovered by Edwin Hall in 

1879, and was named the Hall Effect. The development of 

behavior models for these devices, in order to optimize its 

sensibility in detecting and measuring magnetic fields is an 

extensive area of research.  The Hall sensor applications are found 

in many niches, from consumer devices (i.e. cell phones) to the 

applications in magnetic storage devices (i.e. hard drives).  

2. TRANSPORT EQUATIONS 

2.1 Drift Current Density 
Since the Hall sensor is a semiconductor device, in  the presence 

of external electric and magnetic fields, the Lorentz force and 

carrier speed are obtained from (1) and (2) respectively: 

 �� = �(��� + 	�	�	���)             (1) 

 	� = ���� + �∗(	�	�	���)              (2) 

 

Where q is the elementary charge, E is the electric field vector, v 

is drift velocity vector, and B is the magnetic flux vector, µµµµ* is the 

Hall mobility. Solving Equation (2) for the two-dimensional case, 

where Hall mobility is different from the carrier mobility: 

 

�	�			�		0� = ����		��		0� + �∗	��� � �� �� �̂	� 	� 00 0 ���        (3) 

 

From Equation (3) the 2D components of the drift velocity are: 

 	� = ���	 + �∗(	�	��)            (4) 

 	� = ���	 − �∗(	�	��)            (5)
 

 

The device is constituted essentially by n-type doped silicon. The 

electrons’ speed vector is derived from the drift velocity 

equations: 
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Solving Equation (6) for the 2D case: 

 	 � = � ��	 + � ∗ (	 �	��)   

 	 � = � ��	 − � ∗ (	 �	��)   

 

And the electric field vector is the gradient of the 

 ��� = −!���∅       

 

Considering Equation (9), for the drift velocity, the following 

relations are obtained: 

 	 � = −� #∅#� + � ∗ (	 �	��)   

 	 � = −� #∅#� − � ∗ (	 �	��)   

 

In which the index n indicates the n-type material. Knowing that 

the electrical current density is defined as the amount of current 

passing through a given section area, the following 

provide a simple linear relation for electron veloci

dimensional case, as initially proposed: 

 $�%&% = 	� = −� !���∅ + � ∗ (	� �	���)  

 '� = −� ( !���∅ + � ∗( (	� �	���)  

   

Solving Equation (13) for electrons: 

 ' � = −� ( #∅#� + � 	∗ ' �	��   

 ' � = −� ( #∅#� − � 	∗ ' �	��   

 

Where the total electron current is given by: 

 '� = ' �	�� + ' �	��     

 

2.2 Continuity and Poisson Equations
The Poisson equation and the continuity equation are used 

described below, respectively: ! 2 ∅ =	−(/ 0εεr      

!'� = �* = �  + ,-%                                               

Where ∅ is the electric potential, ( is the charge density, and./.0 is the permissivity of silicon. The concentration of electrons 

is n, which depends on the equilibrium temperature

 

The model equations [3][4] here presented may be solved using 

linear finite difference equations. 

3. BOUNDARY CONDITIONS 
To solve the proposed set of transport and field equations for 

specific Hall sensor geometries, it is necessary to establish the 

boundary conditions of the device to be modeled. In this 

two geometries are specially considered: the Greek

Corbino disk. For the Greek-cross (Figure 3), a regular Cartesian 

         (6) 

       (7) 

       (8)
 

And the electric field vector is the gradient of the potential: 

       (9) 

for the drift velocity, the following 

     (10) 

      (11)
 

type material. Knowing that 

the electrical current density is defined as the amount of current 

passing through a given section area, the following equations 

a simple linear relation for electron velocity in the two-

     (12) 

      (13) 

      (14) 

      (15) 

     (16) 

Equations 
continuity equation are used as 

    (17) 

     (18) 

is the charge density, and 

oncentration of electrons 

, which depends on the equilibrium temperature [3].  

here presented may be solved using 

proposed set of transport and field equations for 

is necessary to establish the 

boundary conditions of the device to be modeled. In this work, 

Greek-cross and the 

cross (Figure 3), a regular Cartesian 

lattice is used, along the x and y directions.

arbitrarily attributed to frontier lattice cells, representing external 

sources. Small potential differences

nonlinear effects, such as resulting from electron velocity 

saturation. Low uniform magnetic field

be considered. 

Figure 3. Greek-cross Lattice.

 

For the Corbino disk device geometry, the 

solving the finite-difference equations 

coordinates. The disc is an object with radial symmetry

potential difference is applied between the center of the disc and 

the outer end, as represented in Figure 4.

from a linear scheme can still be obtained.

Figure 4. Corbino

 

4. METHODOLOGY 
The finite difference numerical method

the equations of proposed Hall Effect 

method has become popular because it is easily applied to 

ordinary and partial linear differential equations. 

difference method approximates first and second order derivatives 

as follows: 

 #1#� = 1(234,6)+1(2,6)∆�    1st Order Progressive

#1#� = 1(2,6)+1(284,6)∆�    1st Order Regressive Difference

#1#� = 1(234,6)+1(284,6)9∆�        2nd Order Central D

lattice is used, along the x and y directions. Potentials applied are 

arbitrarily attributed to frontier lattice cells, representing external 

 are considered to avoid 

nonlinear effects, such as resulting from electron velocity 

agnetic fields of about 0.1 Tesla shall 

 
cross Lattice. 

geometry, the discrete lattice for 

equations require cylindrical 

disc is an object with radial symmetry. A 

potential difference is applied between the center of the disc and 

igure 4. But a numerical solution 

from a linear scheme can still be obtained. 

 
orbino Disk 

The finite difference numerical method [5] was adopted to solve 

proposed Hall Effect semiconductor device. This 

ecause it is easily applied to 

differential equations. The finite 

approximates first and second order derivatives 

Order Progressive Difference                (19) 

Order Regressive Difference     (20) 

ntral Difference                  (21) 



#:1#�: = 1(234,6)+91(2,6);1(284,6)∆�:    2nd Order Central Difference          (22) 

From the Poisson’s equation for the electric potential and taking 

into account the previously presented transport and field equations 

that describe the behavior of a Hall Effect semiconductor device, 

and the continuity equation in steady state form, the following 

discrete finite-difference linear equations are proposed [5]. 
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 ( = −A�           (26) 

 ' �(<;?,=) − ' �(<+?,=) + ' �(<,=;?) − ' �(<,=+?) 
−2∆C((<,=) + 9∆>D (2,6)-% = 0                                         (27) 

 

The current density may be obtained from: ' �(<,=) = ((<,=)		 �(<,=)         (28) ' �(<,=) = ((<,=)	 �(<,=)        (29) 

 

5. CONCLUSION 
A linear 2D model for solving transport and field equations in 

Hall Effect devices has been presented. A complete set of linear 

finite-difference equations has been proposed for obtaining charge 

and current densities, as well as electric potentials in such a 

device, under a uniform perpendicular magnetic field, and with 

arbitrary boundary conditions. A numerical solver is being 

developed and implemented using the free software SCILAB 

(www.scilab.org), which has similar functions and resources as 

found in MATLAB (www.mathworks.com).  
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