
A Hardware-assisted Modulo Scheduling, Placement and
Routing Algorithm for Stream Computing in

Coarse-Grained Reconfigurable Architectures

Waldir Denver Meireles Filho
∗

Departamento de Informatica
Universidade Federal de Vicosa

Vicosa, 36570-000, Brazil
waldir.filho@ufv.br

Ricardo Ferreira
†

Departamento de Informatica
Universidade Federal de Vicosa

Vicosa, 36570-000, Brazil
ricardo@ufv.br

ABSTRACT
This work presents a hardware implementation of a on-the-
fly algorithm which performs three tasks: scheduling, place-
ment and routing for stream computing. The algorithm is
a module schudeling heuristic for a coarse-grained reconfig-
urable architecture (CGRA). The algorithmmaps a dataflow
graph to compute data streams into a CGRA on the fly. The
algorithm and the CGRA are implemented as a virtual layer
over a commercial FPGA. The dataflow mapping is edge ori-
ented. Each edge is mapped on average 6 clock cyles. The
performance is two orders of magnitude better than a C-
based FPGA soft-core implementation. Moreover, the pro-
posed configuration unit has a very low cost, less than 1000
LUTs.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Reconfigurable Ar-
chitectures, Run-time, Hardware-Assisted Algorithm

General Terms
Performance, Pipeline

Keywords
CGRA, FPGA, Placement, Routing, Scheduling, Modulo
Scheduling

1. INTRODUCTION
Reconfigurable architectures are flexible as a software solu-
tion and has high performance as a hardware solution. There
are two possibilities: FPGA and CGRA. A CGRA (Coarse-
Grained Reconfigurable Architecture) consisting of a large

∗Master Student
†Advisor

number of word level functional units (FU). These architec-
tures, in which the reconfiguration occurs at the functional
level, ensuring greater flexibility while reducing the over-
head of reconfiguration simplifying the mapping procedures.
However, there are only few CGRA commercial architec-
tures [7]. One solution is to implement a CGRA as a virtual
layer over a commercial FPGA [4, 2]. Even for CGRA, the
configuration memory could have a large size [1]. One ap-
proach is to generate the configuration at runtime and store
only few configurations during the execution time. As the
user application should be mapped to the target architec-
ture on the fly, the mapping should be simple and direct. In
addition, the mapping should be implemented at hardware
level.

The goal is to develop an algorithm to map a dataflow
in a reconfigurable architecture at runtime. The modulo
scheduling algorithm or MSA [6] maps a dataflow by us-
ing pipeline and spatial computations. For instance, if the
dataflow graph has 10 nodes and the architecture has only
5 units, the MSA could generate a pipeline implementation
with at least two temporal partitions. Each partition will
implement 5 nodes in the best case. The partition number
will be the initial interval (II) to insert data streams at the
pipeline datapath. Even if II = 2, the instruction level par-
alelism (ILP) will be high, ILP = 5 for the previous exam-
ple. The MSA performs three steps: scheduling, placement
and routing. As these problems are NP-complete, the MSA
could be very time consuming as the approach proposed in
[6]. Recently, a polynomial MSA heuristic by using a global
interconnection network has be presented in [4]. This ap-
proach simplifies the placement and the routing complexity.
The execution time is reduced to milliseconds and it could
be implemented in a Just-in-Time (JIT) compiler.

We propose to simplify even more this previous work [4]
by using a hardware assistant implementation of a modulo
scheduling, placement and routing (MSPR). Instead of using
a JIT compiler, our approach could be directly implemented
at runtime. Two versions will be presented. The first one
has only one temporal partition and the dataflow should be
smaller to be fit into the CGRA. The second one uses more
than one temporal partition when the dataflow is bigger than
the CGRA. The experimental results show a fast and very
low cost FPGA implementation of the MSPR algorithm.

alex
Text Box
SForum 2012 - Student Forum on Microelectronics

+

*

*
+

stream

A

B

C

D

c

D F

G

E

FU 1

E

FU 2

F

FU 3

1

2

3

G

FU 4
4

register
5

c

+

*

*
+c

D F

G

E register

(a)

(b) (c)

NET
A
B

B
C

stream

A

B

C

Figure 1: (a) DataFlow (b) Balanced (c) Mapping

2. SINGLE CONFIGURATION
The first algorithm does not handle any temporal partitions
and it is an edge-oriented approach. Each dataflow edge
represents a dependency between two operations. Each node
is an operator such as an adder or multiplier which will be
placed at a dedicated FU. The edges are implemented by
network connection or the routing step. Each FU has one
output and two inputs. The FU is connected to a global
network.

The MSPR presented here is a greedy heuristic. This ap-
proach is based on the algorithm proposed in [4]. Each
graph edge is visited only once, unlike previous work where
during the scheduling, the nodes are visited more than once.
Moreover, while the work of [4] is designed to be incorpo-
rated into compilers JIT (just-in-Time), our greedy heuristic
is designed to be implemented in hardware. For more details
about modulo scheduling and SPR algorithms, the readers
are referred to [6, 5, 4].

The graph depicted in Fig. 1a shows the context of appli-
cations where data streams are received every clock cycle.
The data are processed in pipeline fashion. The datapath
should be balanced, which is achieved by inserting registers
as shown in Fig. 1b. For this example, the data values from
E would arrive early than the data from F to be computed
in G. The nodes work in a synchronous manner and there
is one register at each input (not shown).

The algorithm is implemented as an FSM and it uses only
few registers and four small distributed memories: schedul-
ing time, placement table, and two routing tables. At each
step, a dataflow edge x → y is visited. The FSM flow is
based on edge type. There are four scenarios (see Fig. 1a).
The first scenario is an input edge as A → D, then D is
placed and scheduled at time 1. The second case is when D
is already placed and the second edge should be routing as
B → D. In this case, only the stream B will be connected
to D that has already been assigned to an FU. The third
case is an internal edge as D → F . First, F will be placed
in a free FU . Then, routing connection FUD → FUF will
be done. If F has already been visited and placed, only the
routing will be done.

read

is input ?

was B
place ?

place
input node

place
node

are B
time update ?

place B

insert
register

route
second

RAM
Node Time

addr

we

+1

Current

+1

0

A B

=

bTime

(b)(a)

Figure 2: (a) FSM (b) Scheduling Memory
.

RAM
node2FU

addr

we

A B

en
FreeFu

+1

en
Afu

en
Bfu

RAM
Net B

addr

we RAM
Net A

addr

we

empty?

Figure 3: Place and Routing

The last scenario is the F → G. As the edges are visited
in breadth-first order, the edge E → G should have been
visited prior to the edge F → G. Therefore, a register, as
shown in Fig. 1b should be inserted.

The FSM is illustrated in Fig. 2a. On average, three or
four FSM states are traversed for each dataflow edge. The
data structures for the scheduling, placement and routing
are shown in Fig. 2b and Fig 3. As it is a hardware based
implementation, the memories are distributed and many op-
erations are performed in parallel. The memory NodeTime
stores the node scheduling time. The memory Node2FU
stores the placement table, where a node is mapped to a
FU. Finally, two routing tables, one for each FU input, are
used to the routing step (Net A and Net B in Fig 3). The
other hardware resources are multiplexers, registers and sim-
ple operators (as an adder or comparator).

The whole system is illustrated in Fig. 4. This work focus on
the MSPR implementation (black box) which processes on-
the-fly a dataflow specification. The output of MSPR is sent
to a reconfiguration memory which programs the CGRA to
execute a stream application. Fig. 1c depicts the mapping of
the first example in the CGRA. The CGRA is based on the
proposed architecture presented in [4]. The CGRA consists
on a set of FU and an interconnection network. For this
work, we suppose a crossbar interconnection network. The

N
E
T
W
O
R
K

MemorySPR

FU

FU

FU

FU

FPGA

stream

Figure 4: Reconfigurable System

+
+

*

*
c

D F

G

E register

t3 t2 t1 t0

D

FU 1

E

FU 2

1

2

NET

G

FU 3
3

register
4

FU 1

F

FU 2

1

2

NET

FU 3
3

register
4

(b)(a) (c)

Figure 5: (a) Scheduling (b) Cfg 1 (c) Cfg 2

crossbar network simplifies the routing to a single assign-
ment. However, the implementation cost is O(n2), which is
a problem to implement large CGRA in FPGA, when the
number of FU is bigger than 32 units. For large networks,
a multistage as proposed in [4] could be used. An extra
routing unit should be added too [4].

3. MULTIPLE CONFIGURATIONS
In previous section, we assume that the architecture has
enough operators and registers to a single step dataflow
mapping. Our greedy algorithm should be able to map a
graph bigger than the target architecture. Let us suppose a
CGRA with only three FUs. Let us consider the dataflow
depicted in Fig. 1b, where there are five nodes including a
register. Moreover each node has an output register which
is not shown for ease of explanation. At least two temporal
partitions are needed (see Fig. 5b and c). The nodes D, E
and G are mapped in the first configuration (Cfg 1). The
node F and the register are mapped in the second config-
uration (Cfg 2). The initial interval (II) to insert the data
streams will be 2. The latency will be 3 and the throught-
put will be 2 as the II. The ILP is at least 2. In addition,
different FUs in the same configuration could process data
in different time. For instance, node D computes a data at
T3 (the third element inside the stream), and node G placed
in the same configuration is computing a data at time T1

(first element) as shown in Fig. 5a.

This simple example has been used to explain the MSPR
behavior when the size of dataflow is bigger than the CGRA.
If the CGRA has 64 FUs, it is possible to map a 100 node
dataflow in two temporal partitions as shown in next section.
The II will be 2 but the ILP will be 50 and most FUs will
be used.

en
config

RAM
NetB

addr

weaddr

RAM
Node2cfg

addr
we

+1

en
Next

+1
en

bConfig

en

previous
RAM
NetA

addr

weaddr

RAM

node2FU

addr we

RAM
FreeFU

addr

we
+1

en
Bfu en

Afu

A B

Figure 6: Hardware Resources for Temporal Parti-
tions

The MSPR could handle more the one configuration by us-
ing few hardware resources. The FSM is quite the same as
shown in Fig. 2a. The scheduling uses one more memory
module to store the node temporal partition or configura-
tion. The FU inputs are placed on the first partition P0.
When processing an edge as the D → F as FUd belongs to
P0, a FU at P1 will be allocated for F . Then, when pro-
cessing partitions Pi the target operator will be placed at
partition Pi+1 = (Pi + 1) mod P , where P is the maximum
number of partitions.

The routing need two memory modules for each temporal
partition or a bi-dimensional memory. Fig 6 depicts the
MSPR resources without the FSM module and the schedul-
ing module. The memories Node2Fu and Node2Cfg store the
placement and the configuration per node. FreeFU is used
during the placement and a 2D memory is used to store the
routing tables (Net A and B RAM).

4. EXPERIMENTAL RESULTS
The one step MSPR algorithm has been implemented in an
FPGA Virtex6 as shown in Tab. 1. Column N shows the
maximum number of nodes or FU supported for the target
architecture. The source code has been written in VHDL.
The code is parametrized as function of N . Columns LUT ,
FF depict the number of slice LUTs and slice registers after
the P&R steps by using Xilinx Webpack ISE 14.2. For small
values of N , the Xilinx tools automatically implements the
memories by using LUTs. For large values of N , Column
Mem shows the number of embedded RAM modules which
are used to implement the MSPR. The FSM Column dis-
plays the maximum clock cycle. The MSPR uses very low
resources as shown in Tab. 1, even for large values of N . For
instance, MSPR uses only 199 LUTs for a target architec-
ture with 64 FUs, which could compute up to 64 operations
in parallel.

Tab. 2 depicts the resources for MSPR with several con-
figurations. Column FU displays the maximum of CGRA
Functional Units. As this MSPR version could fit graph
bigger than the CGRA, Column Cfg depicts the maximum
number of configurations or temporal partition supported by

Table 1: FPGA Resources for One Step
N LUT FF Mem Clk (Mhz)
16 82 59 0 302
64 199 123 0 275
256 519 315 4 262
1024 1973 1097 4 162

Table 2: 2,4,8 and 16 Configurations
N FU Cfg LUT FF Mem
32 16 2 137 85 0
128 64 2 284 197 2
512 256 2 812 581 6
64 16 4 239 128 0
256 64 4 626 336 2
1024 256 4 2004 1096 11
128 16 8 368 203 1
512 64 8 949 594 3
256 16 16 723 334 3

the mapping procedures. Others Columns shows the FPGA
resources similar to the Tab. 1. The size of MSPR depends
on the maximum number of configurations or temporal par-
titions to be supported. Each aditional configuration will
require two memory modules to store the routing tables.
Even for several configurations, the MSPR uses few FPGA
resources.

The MSPR algorithm has been tested over a set of dataflow
graphs available in [3] as shown in Tab. 3. Columns Name,
N show Benchmark name and node number. Column Reg
shows the number of added register to balance the edges
for pipeline execution. Column FU depicts the number of
Functional Units of the target CGRA. Column MII shows
the minimium pipeline initial interval. The minimum II
is computed by (N + Reg)/FU . Column II shows the II
reaches by the MSPR algorithm. If MinII = 1, the one step
MSPR is used, otherwise more than one temporal partition
will be computed. Column FSM displays the total number
of clock cycles to execute the MSPR algorithm. Column
MBlaze shows the number of cycles spent by a C equivalent
implementation running on the MicroBlaze. The MicroBlaze
is a soft processor core designed for Xilinx FPGAs.

The hardware MSPR version is at least 23× faster than
the MicroBlaze C implementation for the smooth dataflow
graph. For the best case, the arf benchmark, our hardware
MSPR is up to 150× faster than a C based soft-core imple-
mentation. The FSM will requires only 172 clock cycles in
comparison to the 25398 MicroBlaze cycles. Moreover, the
MSPR uses less than 200 LUTs, while a MicroBlaze uses
around 2000 LUTs. Therefore, the hardware version is up
to three orders of magnitude faster than a soft-core C imple-
mentation. The MicroBlaze version used is MB 8.00.B. It
is configured with barrel shifter and block memory of 128kb
and without cache and floating-point units.

Let us consider collapse benchmark and the CGRA perfor-
mance. As the N = 65, a pipeline version will execute in
65 clocks for each stream element. A parallel version, as the
II = 2, will archive a throughput equals to 2. Therefore, the

Table 3: MSPR performance
name N Reg FU MII II FSM MBlaze
arf 36 10 64 1 1 172 25398

collapse 65 38 64 2 2 374 22877
cosine2 112 62 64 3 3 591 46661

interpolate 156 40 64 3 4 1327 31376
smooth 260 128 256 2 2 1232 54963

ILP will be N/2 = 32.5, or 32 operations will be executed
in parallel every clock cycle.

The CGRA reconfiguration time is at least 374 clock cycle
(see Tab. 3). Then, if the input stream lenght is greater
than 374/65 = 5.75 or 6, the stream pipeline execution will
be faster than the sequential pipeline. If the data stream
is bigger, for instance a 1,000 element stream, the speedup
will achieve a value close to 32×, for this example.

5. CONCLUSIONS
This work present a hardware-assistant implementation for
a module scheduling, placement and routing algorithm. The
algorithm has been implemented as an on-the-fly configura-
tion unit for a CGRA. The experimental results show that
the modulo scheduling unit could achieve a good perfor-
mance (50 × faster than a softcore) by using few FPGA
resources (less than 1000 LUTs). Future works will include
less expensive interconnection networks as a multistage net-
work proposed in [4].

6. REFERENCES
[1] T. Berticelli Lo, A. Beck, M. Rutzig, and L. Carro. A

low-energy approach for context memory in
reconfigurable systems. In Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE Int. Symposium on, pages 1 –8, april 2010.

[2] J. Coole and G. Stitt. Intermediate fabrics: Virtual
architectures for circuit portability and fast placement
and routing. In IEEE/ACM CODES+ISSS, 2010.

[3] ExPRESS. Electrical computer engineering dep., ucsb,
usa. http://express.ece.ucsb.edu/benchmark/.

[4] R. Ferreira, J. G. Vendramini, L. Mucida, M. M.
Pereira, and L. Carro. An fpga-based heterogeneous
coarse-grained dynamically reconfigurable architecture.
In International conference on Compilers, architectures
and synthesis for embedded systems, CASES ’11. ACM,
2011.

[5] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker,
C. Ebeling, and S. Hauck. Spr: an
architecture-adaptive cgra mapping tool. In Proceeding
of the ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA ’09, pages 191–200,
New York, NY, USA, 2009. ACM.

[6] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and
R. Lauwereins. Exploiting loop-level parallelism on
coarse-grained reconfigurable architectures using
modulo scheduling. In Conference on Design,
Automation and Test in Europe, page 10296, 2003.

[7] e. Volker Baumgarten. PACT XPP - A
Self-Reconfigurable Data Processing Architecture. The
Journal of Supercomputing (TJS), 26(2):167–184, 2003.

