
Graphical Environment tool for testbench conception
Marcelo Pereira Barros

Escola de Engenharia Elétrica,
Mecânica e de Computação

Universidade Federal de Goiás
warriorfly@gmail.com

Cássio Leonardo Rodrigues

Instituto de Informática
Universidade Federal de Goiás

cassio@inf.ufg.br

Alex Mendes Martins
Escola de Engenharia Elétrica,
Mecânica e de Computação

Universidade Federal de Goiás
alexengcomp@gmail.com

Adriano Cesar Santana

Escola de Engenharia Elétrica,
Mecânica e de Computação

Universidade Federal de Goiás
Adriano@emc.ufg.br

Karina Rocha G. da Silva
Escola de Engenharia Elétrica,

Mecânica e de Computação
Universidade Federal de Goiás

karinarg@emc.ufg.br

ABSTRACT

Functional verification is a very difficult part of the entire design.
It spends almost 70% of the resources. For this reason the
engineers are supposed to use all the necessary tools in order to
decrease the verification bugs and costs. This paper presents the
creation of an graphical auxiliary tool to design the blocks that
will compose the design, in order to generate the testbench to
make the functional verification.

Keywords
Functional Verification, VeriSC, ETBC

1. INTRODUCTION
Functional verification is a technique to demonstrate that the
intent of a hardware design is preserved in its implementation
[01;02;04]. In fact, there is no consensual functional verification
methodology in the digital circuit industry. Each design house
tailors its methodology according to the type of digital circuit to
be produced, the resources that are available and constraints that
are imposed by the project. However most functional verification
methodologies comprise four basic components: i) the Register
Transfer Level (RTL) design under verification (DUV); ii) a set of
specifications that the design must comply with; iii) a simulation
mechanism to judge the DUV against its set of specifications; iv)
a mechanism to estimate the level of confidence achieved during
the functional verification process. Except for the DUV, the
remaining components are enclosed in an environment called
testbench.

The testbenches implementation can take a considerable amount
of time in the verification process. Some reasons, which can
increase the time for testbench implementation, are the number of
connections between modules/blocks, the time spent to adapt the
testbench to the Design Under Verification (DUV) and the
number of module instances, transaction data structures and
transaction communication channels. A methodology that makes
the complex verification process easier and a tool to implement
this methodology and generate automatically testbench prototypes
can be a good approach to reduce the overall time of project flow.
This paper presents a tool to graphically design the block of
modules that compose the hierarchical DUV. These design is used
to generate a TLN file which is used to input the eTBC tool [03].
The eTBc (Easy TestBench Creator) is a semi-automatic testbench
generation tool, which has been used to generate testbench
prototypes used in the VeriSC methodology [01], as explained in

the next sections. VeriSC methodology guides the
implementation of working testbenches during hierarchical
decomposition and refinement of the design, even before the RTL
implementation starts. More information can be obtained in [01].

2. EASY TESTBENCH CREATOR
The Easy Testbench Creator (eTBc) is a tool for semiautomatic
testbench generation. This tool works as a code generator,
receiving two files as input: A Transaction Level Netlist (TLN)
file described by the functional verification engineer (user of
eTBc). This file is a model of the IP-core using Transaction data
and RTL data. The RTL data used in this level is only the name of
modules I/O ports. The remaining of the description is only
transaction data. The language used in this level is eTBc Design
Language (eDL). eDL is a simple language used to describe
modules, connections, FIFOs and some data in the RTL level.

The another input file is a template of a testbench element that
will be generated. The eTBc template is a way that eTBc works to
generate testbench elements. The role of templates is to guide
eTBc to generate code, based in one TLN.

The TLN defines the model of system and the template defines the
model of testbench. The templates are created using eTBc
Template Language (eTL) and there are implemented templates in
VeriSC methodology for SystemC and Verilog languages. eTL is
a language that allows adjustment to a specific methodology and
HDL. If a Verilog/SystemVerilog, VHDL or SystemC specific
methodology wants to generate testbenches in a specific way, a
template can be written using eTL for this purpose.

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

Figure 1: Architectural Model

Figure 2: Source Code written in eDL

As can be seen in the architectural model of the tool
presented in Figure 1, the models are created using the eTBc
Design Language (eDL). Internally the tool uses a code generator
and two translators, one to interpret the TLN code and the other to
interpret the code of the templates. The eDL language is used to
write the TLN code to describe the model. The eTL language is
used to write the templates used by the tool. If one wants to port
the tool for a specific methodology, he has to create new
templates according with this methodology. The eTBc can be
adapted to other methodologies and languages using the template
language (eTL). In this case, the verification manager/team has to
implement your own templates to use with a specific
methodology. After that, in order to finish the testbench, the user
need to fill the ”source” module of VeriSC with stimuli
generation and ”checker” with all asserts constraints according
with the verification plain.

A simple example of TLN written in eDL is shown in Figure 2.
This TLN is a model of an 8-bit adder. From this example shown
in Figure 2, eTBc can generate all testbench elements of the
VeriSC methodology discussed in section 2. This model written in
eDL is not restricted only to VeriSC methodology. It can be used
in any verification methodology. To use this model with another
methodology is necessary other templates written in eTBc
Template Language (eTL).

The problem in order to use eTBc is to learn how to implements
the eDL language. Then, a more intuitive form to implements the
TLN code is to design the entire module that compose the DUV

and automatically infer the TLN code. This is the objective of the
tool presented in next section.

3. THE GRAPHICAL TOOL
Using the eDL graphical generation tool is possible to

create modules, and each module represents the hierarchical
division of the design. The modules can be manually designed and
linked according to the communication interface from the design.

Figure 3: Source Code written in eTL

The modules and their interfaces are presented on screen, making
the creation and viewing more intuitive. The visual command
makes the design implementation easier, faster and more intuitive
and allows for better code maintenance. The user can create the
blocks and the interface communication between the modules.
Then, it is necessary to specify what kind of interface will be
linking the modules. After that step, the visual blocks are
converted to eDL code. And the eDL code can be used to generate
the testbench design.

The application allows also the opposite way, generating a visual
presentation of the project by inserting code EDL. The software
includes a Tool Window (Figure 4) that allows you to choose the
form that it will work.

Figure 4: Tools Window

3.1 Graphic Mode
The graphic mode application can be used selecting Graphic in
the Tools Window. In graphic mode, the Main Window will be
released for editing, in which the user will interact to graphically
building the DUV. The eDL source code resulted will be
generated automatically in real time, on the Parser window, which
is locked for editing.

The Window allows choosing three types of iteration to the Main
Window: insert module, connect, and select.

3.1.1 Insert Module
The insert module option allows to insert blocks in the window,
simply by pressing the mouse button, drag to define the size, and
drop. These blocks represent a hierarchical module from the
DUV. Using the example shown in Figure 2, piacdc_i and qi_i are
instances of modules of PIACDC and QI, respectively, and are
instantiated on a parent module, in this case P_mpeg.

When inserting a block, a module is created, and the same is
instantiated in the parent module, which is the one who first
pressed the mouse button.

Figure 5: Main window

3.1.2 Connect
The connect option, allows the user to connect two blocks with
arrows by clicking and dragging on a block to another. The user
can connect two children blocks, a parent block to a child block or
otherwise.

The connection between the blocks represents the form of
communication between the modules. Again, the example of
Figure 2 shows that there is an output instance of piacdc_i
(pi_out) connected to an input instance of qi_i (qi_in) through a
fifo connection (pi_qi). These interfaces, input, output and fifo,
represent instances of the structure coeffs.

By clicking on a child block and drag it to another, a new
structure is created and instantiated in three different places: in the
parent module, as a fifo, and both children, as input and output.
Then, the blocks are connected by inserting this information in the
instance of both modules.

A similar procedure occurs if you connect a parent block to a
child block, except for the absence of instance fifo, which is not
necessary.

For connections of instances of modules, you can also use the
same output structure connecting the various inputs. Note that
after you insert an arrow, are created in addition to the arrow, two
small boxes at the ends. These boxes, which represent the input
and output structures, may be used to make new connections,
reusing instances of their structures.

3.1.3 Select
In the select option, the user can be free to interact with graphical
objects created by resizing or moving the blocks. The user can
also change the characteristics of an object by double clicking.
This opens a properties window (Figures 6-7) with specific
characteristics of the object.

Figure 6: Properties Window – Connection

The block properties will display the name of the module that is
instantiated and the instance of the module. For the given
example, a double click on the block piacdc_i shows the Figure 7.
Names can be changed and the module instance (the block) may
be removed by clicking Remove Instance Module.

The connection properties (Figure 7) will show the name of the
implemented structure and interfaces (input, output and fifo). It is
this window which will be also included variables on the
structure, by first selecting the type of variable (trans or signal),
and then adding, removing, renaming or changing the variables.

The same structure can be used in multiple connections. The
Figure 2 shows that all interfaces are instances of the same
structure, called coeffs. Thus, the graphic implementation, after
performed the connections, just modify one of them to represent
the structure coeffs, inserting and renaming the variables. For
other connections, just change the first box called Struct, in the
Properties Window (Figure 8), to reference the same structure
coeffs. The structures which do not appear in any connection is
automatically rejected. This is also valid for modules, which can
have more than one declared instance.

Finally, the Tools Window still shows the Save button to export
the EDL generated code directly to a file.

Figure 7: Properties Window - Instance Module

3.2 Parser Mode
The software still has an inverse way that meets the requirements
of compatibility and standardization. Simply selecting the Parser
in the Tools Window (Figure 4). So the Main Window (Figure 5)
is locked for editing by releasing the Parser window. Changes
made to the inserted code automatically reflect the Main Window,
unless you find a bug in the inserted code. Errors are lexical,
syntactic and semantic checked.

The user can still click the Open button in the tool window to
select a file with saved eDL code.

4. Results
Using the Graphical Environment (GET) tool in order to generate
the testbench provide some advantages when compared with
making it manually. One big advantage is not having to learn how
to build the TLN file. The other advantage is the number of line
codes that can be saved using the tool. The engineer does not have
to generate any code lines, when using the GET tool.

The next table uses code from an MPEG4 decoder design, in
order to make the comparison between number of code lines a
design using the TLN file and using GET tool. This MPEG4
decoder design is part of Brazil-IP project [7].

Design Lines of
TLN

Lines with
GET

MPEG4 25 0

5. CONCLUSIONS
This paper presented a graphical auxiliary tool to design the
blocks and interfaces that will compose the DUV to be
implemented. The tool can be used to generate the testbench.
With this tool the engineer do not need to be concerned with any
specific code. He only needs to make a design of his hierarchical
DUV and the tool will generate the TLN to be used in the eTBc
tool.

6. ACKNOWLEDGMENTS
This work was supported by grants from the CNPq sponsor
agency.

7. REFERENCES
[1] K. R. G. da Silva, E. U. K. Melcher, I. Maia, and H. do N.

Cunha. “A methodology aimed at better integration of
functional verification and rtl design”, Design Automation
for Embedded Systems, Volume 10, Number 4, pp. 285-298,
December 2005

[2] J. Bergeron, editor. Writing Testbenches. Springer, Boston,
2003.

[3] Maia, I., Silva, K. R. G., Max, L., Camara, R., & Melcher,
E. U. K. (2007). eTBc: A Semi-Automatic Testbench
Generation Tool. IPSOC (pp. 1-5) .

[4] O. Lachish, E. Marcus, S. Ur, and A. Ziv. Hole analysis for
functional coverage data, 2002.

[5] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. “User
defined coverage: a tool supported methodology for design
verification”, DAC ’98, pp. 158–163, New York, 1998.

[6] BrazilIp. www.brazilip.org.br/fenix. 2007.

[7] A. K. Rocha, P. Lira, Y. Y. Ju, E. Barros, E. Melcher, and G.
Araujo. “Silicon validated ip cores designed by the brazil-ip
network”, IP/SOC 2006, June 2006.Bowman, M., Debray, S.
K., and Peterson, L. L. 1993. Reasoning about naming
systems. ACM Trans. Program. Lang. Syst. 15, 5 (Nov.
1993), 795-825.

