

BOOLEAN REPRESENTATION CODE – AN EFFICIENT

METHOD TO REPRESENT BOOLEAN FUNCTIONS

Vinícius N. Possani, Renato S. Souza, Julio S. Domingues Jr.,
Felipe S. Marques, Leomar S. da Rosa Jr.

Group of Architectures and Integrated Circuits – GACI
Technology Development Center - CDTec

Federal University of Pelotas – UFPel
Pelotas, RS, Brazil

{vnpossani, rsdsouza, jsdomingues, felipem, leomarjr}@inf.upel.edu.br

ABSTRACT

CAD (Computer Aided Design) tools are currently indispensable

in the development of digital circuits due to the feasibility of

adapting technology parameters. They are widely used in

different design levels, from high-level synthesis to layout design,

simulation, analysis and verification. This paper describes a

quickly and secure method to generate Boolean Representation

Code of logic functions to efficiently represent Boolean functions.

To perform a case of study, the proposed method was applied in

the Soptimizer to validate the optimizations performed by the tool.

Experiments show a reduction in runtime up to 41.4% when

comparing to the previously adopted strategy

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,

optimization.

General Terms
Algorithms, performance, design, experimentation, theory.

Keywords
Logic synthesis, switching theory, transistor networks.

1. INTRODUCTION
Electronic devices are increasingly present in our days, causing a

great impact on society, due to the fact that they apply directly to

different areas of knowledge. Thus, it has been noted the

importance of advances in the development of digital circuits. Due

to that it is possible to create new technologies. Consequently,

great difficulties are eventually found due to adaptation of new

technology parameters, as the complexity of designing a chip in a

time short enough that the product is launched on the market. In

this scenario, CAD (Computer Aided Design) tools have

contributed to developers increase the efficiency and reduce the

complexity in a project [1-6].

Following this trend, a tool that implements a graph-based method

to generate transistor networks was proposed. This tool is called

Soptimizer [7]. Basically, from a Boolean expression, it is

obtained a graph, where each edge represents a transistor, and, in

a posterior step, it is performed an optimization process by edges

sharing, reaching a reduced network in terms of switches.

However, due to the edges sharing process, it can be introduced

new paths in the graph, which may change the logical behavior of

the function. Therefore, it is necessary to ensure that these new

paths do not change the logical behavior of the circuit that is

represented by the graph.

Thus, this paper describes a method to generate a Boolean

Representation Code (BRC) of a logic function. The proposed

method is incorporated in Soptimizer tool to verify if the new

paths in the graph are valid and have not changed the logical

behavior of the circuit. Apart from that, by using the proposed

method, the Soptimizer tool becomes able to perform some

algebraic optimizations that are not possible when using the

previous solution.

2. BOOLEAN REPRESENTATION CODE
The main idea of this method is to generate a BRC for a Boolean

function. The first step consists in checking how many variables

there are in the function. The proposed method represents the

BRC by integers. So, to discover how many integers are

necessary, it is computed 2n, where n represents the number of

variables existing in the input function. After that, the result is

divided by 32. If needed to use more of one integer to represent

the BRC, than it is used a structure of vector to store each integer.

For example, in a case that a function has six variables, the result

of calculation 26/32 is equal to 2. So it is needed two integers to

generate the basic BRC for each variable. A vector is used to

guarantee that during the logical operations the comparisons are

performed correctly, where each integer in the vector is compared

with another integer in an equivalent position.

After verifying how many integers are necessary to create a BRC,

the method generates the basic BRC, which are the BRC of each

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

� 2 variable:

var1 = 5

var2 = 3

� 3 variable:

var1 = 85

var2 = 51

var3 = 15

� 4 variable:

var1 = 21845

var2 = 13107

var3 = 3855

var4 = 255

� 5 variable:

var1 = 1431655765

var2 = 858993459

var3 = 252645135

var4 = 16711935

var5 = 65535

� 1 variable:

var1 = 1

Figure 1. Default values of basic BRC for each variable according to the

number of variables present in the input function.

variable in the input function. If the function has no more than

five variables, it is performed a naïve assigning process, where

each variable receive a BRC as shown in Figure 1. The data

present in Figure 1 were generated by concatenating bits, a similar

process of mounting a truth table. Figure 2 exemplifies that when

considering two variables.

� 2 variable:

var1 = 0000 0000 0000 0101 = 5

var2 = 0000 0000 0000 0011 = 3

Figure 2. BRC when considering two variables.

When the function contains more than five variables, the process

of generating basic BRC is modified. So, it is used a vector. For

the first five variables, the same values are used for the five

variables indicated in Figure 1. These values are written in all

positions of the vector according to the corresponding variable.

Then, for the first variable is assigned the value 1431655765 for

all positions of the vector. This is done for all the next four

variables, changing only the value of the assignment for each

case. For the next variables it is performed a process in which it is

concatenated the value of 0 and -1 at each position of vector. The

number of concatenations of 0 and -1 required is indicated by 2n-5.

This process resembles the method of assembling a truth table,

where each variable is represented by a sequence of bits in the

columns of the table. Figure 3 shows the reason for use 0 and -1

during the basic BRC generation.

0 0 0 0 . . . 0 0 0 0 1111 . . . 1111 0 0 0 0 . . . 0 0 0 0 1 111 . . . 1 111var6 =
127 96 95 64 63 32 31 0

0 -1 0 -1

Figure 3. Splitting a bit sequence and associating to an

equivalent integer.

This whole process of generating basic BRC for a given function

that contains more than five variables is shown in Figure 4.

In a case where some variable of the function is negated, the

process of basic BRC generation is the same. It will be assigned,

for this negated variable, the value presented in Figure 1. The

main difference is that bits that are 0 become 1, and those that are

1 become 0. In a case where the function has more than five

variables, it is performed the same procedure of concatenation

explained before. The only difference is the order of

concatenation of the values in vector. Firstly, it is concatenation

the value -1. After that, the value 0 is concatenated. Figure 5

shows a case of a random function that contains the third and

seventh negated variables.

� 7 variable:

1431655765 1431655765 1431655765 1431655765

858993459 858993459 858993459 858993459

252645135 252645135 252645135 252645135

16711935 16711935 16711935 16711935

65535 65535 65535 65535

0 -1 0 -1

0 0 -1 -1

var1 =

var2 =

var3 =

var4 =

var5 =

var6 =

var7 =

Figure 4. Vectors with the values for each variable.

-252645136 -252645136 -252645136 -252645136!var3 =

-1 -1 0 0!var7 =

Figure 5. Vectors with the values for each negated variable.

After generating basic BRC, it is created the BRC for the entire

function by using logical operations AND and OR. Expression 1

shows the function used as example.

A*C*E*F + A*B*F + A*B*!C + D*E*!G (Exp. 1)

First it is obtained the BRC of the products through bitwise AND

operation of each integer value present in a position of the vector

with the other integer value of the corresponding position in the

next vector. After that, it is performed the bitwise OR operation

between the BRC generated before. Figure 6 shows a BRC

generation of a product through a bitwise AND operation

performed between each integer of vectors.

After generating all BRC of the products, it is performed the

bitwise OR operation between each position of vectors of each

BRC of these products. This process is illustrated in Figure 7,

which also shows the BRC of the function shown in Expression 1.

16711935 16711935 16711935 16711935 D =

65535 65535 65535 65535 E =

-1 -1 0 0!G=

255 255 0 0

AND AND AND AND

AND AND AND AND

D*E*!G =

Figure 6. Generation of the BRC for the product D*E*!G.

0 286331153 0 286331153A*B*F =

0 1285 0 1285A*C*E*F =

OR OR OR OR

OR OR OR OR

269488144 269488144 269488144 269488144A*B*!C =

OR OR OR OR

255 255 0 0D*E*!G =

269488383 286332415 269488144 286332181Exp.1 =

Figure 7. Generation of the BRC for Expression 1.

3. EXPERIMENTAL RESULTS
The proposed method was implemented in Java using NetBeans

IDE 7.0 and was integrated into the Soptimizer tool to be

validated and tested as a case of study. In order to evaluate the

efficiency of the proposed method, it was used as benchmark all

functions from the 4-input p-class logic functions set [8]. This set

is composed by 3982 Boolean functions. Also, it was used 54

random logic functions with six input variables, called Random6.

Apart from that, three functions were chosen for analysis. The

XOR 4 was chosen because it is extremely used in several circuits

such as adders and multipliers. Functions F5 and F13 [9, 10],

were chosen because they contains a large number of variables if

comparing to the 4-input p-class logic functions set.

Table 1 presents the results obtained in terms of runtime. The

column "Without BRC" shows the results when Soptimizer tool

uses the old version algorithm to compare functions equivalence.

This algorithm consists in traversing the graph and obtaining all

cubes that compose the function. In the sequence, each cube

obtained from the graph is compared to the ones from the input

expression. The column "With BRC" shows the runtime when the

proposed method is used. The column “Reduction” reports the

percentage of gain and loss in runtime. These tests were executed

on a computer with an Intel Pentium Dual Core T2370 1.73GHz,

2GB of memory and Windows Seven Ultimate 64bit.

As can be seen in the results of Table 1, for the benchmarks p-

class, Random6, XOR 4 and F13, the total runtime of the

Soptimizer tool is smaller when using the proposed algorithm.

However, for the benchmark F5, the obtained runtime was worst

when using the proposed algorithm. The main reason for that is

that the benchmark F5 contains large cubes, with few variables. In

this situation the proposed algorithm presents a disadvantage if

comparing to the old strategy usage by the Soptimizer tool. All the

process to generate the BRC and compare them when necessary is

more time consuming than just directly compare products stored

in vector structures. Our method is able to deliver better results

when there are several cubes to be checked in a SOP form.

Also, a study was conducted to evaluate the individual runtime for

each logic functions that compose the 4-input p-class benchmark.

This way, it was possible to perform a better analysis in which

functions the runtime was reduced. Figure 8 shows a graphic that

summarizes these results.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

Without BRC

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

With BRC

Figure 8. Runtime comparison when using 4-input p-class benchmark

to generate transistor networks in the Soptimizer tool.

Table 1. Total runtime obtained by Soptimizer tool with and without using the BRC proposed method.

Benchmark Number functions Number variable Without BRC With BRC Reduction

p-class 3.982 4 2193 ms 1599 ms 27,1%

Random6 54 6 189 ms 156 ms 17,5%

XOR 4 1 4 57 ms 47 ms 17,6%

F5 1 8 78 ms 100 ms -28,3%

F13 1 10 546 ms 320 ms 41,4%

4. CONCLUSIONS AND FUTURE WORK
This paper presented a method to generate a Boolean

Representation Code which can efficiently represent Boolean

functions. At a first moment, the proposed method was integrated

into the Soptimizer tool to validate the optimization process of

transistor networks.

The method was validated using several Boolean functions with

different number of input variables.

The results demonstrated that the algorithm can minimize the total

runtime when incorporated in a CAD tool. In the case of study, it

was possible to achieve an average gain of 27.1% in runtime when

considering 4-input p-class benchmark.

As future work, more tests will be performed considering different

benchmarks. Also, it is intended to incorporate the proposed

method into other Boolean evaluation algorithms developed by

the group, especially in those related to technology mapping.

5. ACKNOWLEDGMENTS
Research partially supported by Brazilian funding agencies CNPq

and FAPERGS, under grant 11/2053-9 (Pronem).

6. REFERENCES
[1] Da Rosa Junior, L. S.; Marques, F. S.; Cardoso, T. M. G.;

Ribas, R. P.; Sapatnekar, S.; Reis, A. I. Fast Disjoint

Transistor Networks from BDDs. In: 19th ACM Symposium

on Integrated Circuits and Systems Design, 2006, p. 137-

142.

[2] Callegaro, V.; Marques, F. S.; Klock, C. E.; Da Rosa Junior,

L. S.; Ribas, R. P.; Reis, A. I. SwitchCraft: a framework for

transistor network design. In: 23rd Symposium on Integrated

Circuits and System Design, 2010, p. 49-53.

[3] Das, S.; Chandrakasan, A.; Reif, R. Three-dimensional

integrated circuits: performance, design methodology, and

CAD tools. In: IEEE Computer Society Annual Symposium

on VLSI, 2003, p. 13-18.

[4] Keutzer, K.; Vanbekbergen, P. The impact of CAD on the

design of low power digital circuits. In: IEEE Symposium on

Low Power Electronics, 1994, p. 42-45.

[5] Da Rosa Junior, L. S.; Marques, F. S.; Schneider, F.; Ribas,

R. P.; Reis, A. I. A Comparative Study of CMOS Gates with

Minimum Transistor Stacks. In: 20th ACM Symposium on

Integrated Circuits and Systems Design, 2007, p. 93-98.

[6] Da Rosa Junior, L. S.; Schneider, F.; Ribas, R. P.; Reis, A. I.

Switch Level Optimization of Digital CMOS Gate Networks.

In: 10th IEEE International Symposium on Quality

Electronic Design, 2009, p. 324-329.

[7] Possani, V. N.; Souza, R. S.; Domingues Jr., J. S.; Agostini,

L. V.; Marques, F. S.; Da Rosa Junior, L. S. Optimizing

Transistor Networks Using a Graph-Based Technique. In:

Journal of Analog Integrated Circuits and Signal Processing,

Springer, 2012.

[8] Ledur, M.; Marranghello F.; Da Rosa Junior, L. S.; Reis, A.

I.; Ribas, R. P. Set of Digital Cells According to Logic

Equivalences. In: VII Student Forum on Microelectronics,

2007.

[9] J. Zhu et al. On the Optimization of MOS Circuits. In: IEEE

Transactions on Circuits and Systems: Fundamental Theory

and Applications, 1993, p. 412-422.

[10] D. Kagaris et al. A Methodology for Transistor-Efficient

Supergate Design. In: IEEE Transactions on Very Large

Scale Integration Systems, 2007, p. 488-492.

