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ABSTRACT 

CAD (Computer Aided Design) tools are currently indispensable 

in the development of digital circuits due to the feasibility of 

adapting technology parameters. They are widely used in 

different design levels, from high-level synthesis to layout design, 

simulation, analysis and verification. This paper describes a 

quickly and secure method to generate Boolean Representation 

Code of logic functions to efficiently represent Boolean functions. 

To perform a case of study, the proposed method was applied in 

the Soptimizer to validate the optimizations performed by the tool. 

Experiments show a reduction in runtime up to 41.4% when 

comparing to the previously adopted strategy  

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 

optimization. 

General Terms 
Algorithms, performance, design, experimentation, theory. 
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1. INTRODUCTION 
Electronic devices are increasingly present in our days, causing a 

great impact on society, due to the fact that they apply directly to 

different areas of knowledge. Thus, it has been noted the 

importance of advances in the development of digital circuits. Due 

to that it is possible to create new technologies. Consequently, 

great difficulties are eventually found due to adaptation of new 

technology parameters, as the complexity of designing a chip in a 

time short enough that the product is launched on the market. In 

this scenario, CAD (Computer Aided Design) tools have 

contributed to developers increase the efficiency and reduce the 

complexity in a project [1-6]. 

Following this trend, a tool that implements a graph-based method 

to generate transistor networks was proposed. This tool is called 

Soptimizer [7]. Basically, from a Boolean expression, it is 

obtained a graph, where each edge represents a transistor, and, in 

a posterior step, it is performed an optimization process by edges 

sharing, reaching a reduced network in terms of switches. 

However, due to the edges sharing process, it can be introduced 

new paths in the graph, which may change the logical behavior of 

the function. Therefore, it is necessary to ensure that these new 

paths do not change the logical behavior of the circuit that is 

represented by the graph. 

Thus, this paper describes a method to generate a Boolean 

Representation Code (BRC) of a logic function. The proposed 

method is incorporated in Soptimizer tool to verify if the new 

paths in the graph are valid and have not changed the logical 

behavior of the circuit. Apart from that, by using the proposed 

method, the Soptimizer tool becomes able to perform some 

algebraic optimizations that are not possible when using the 

previous solution. 

2. BOOLEAN REPRESENTATION CODE 
The main idea of this method is to generate a BRC for a Boolean 

function. The first step consists in checking how many variables 

there are in the function. The proposed method represents the 

BRC by integers.  So, to discover how many integers are 

necessary, it is computed 2n, where n represents the number of 

variables existing in the input function. After that, the result is 

divided by 32. If needed to use more of one integer to represent 

the BRC, than it is used a structure of vector to store each integer. 

For example, in a case that a function has six variables, the result 

of calculation 26/32 is equal to 2. So it is needed two integers to 

generate the basic BRC for each variable. A vector is used to 

guarantee that during the logical operations the comparisons are 

performed correctly, where each integer in the vector is compared 

with another integer in an equivalent position. 

After verifying how many integers are necessary to create a BRC, 

the method generates the basic BRC, which are the BRC of each  
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� 2 variable:

var1 = 5

var2 = 3

� 3 variable:

var1 = 85

var2 = 51

var3 = 15

� 4 variable:

var1 = 21845

var2 = 13107

var3 = 3855

var4 = 255

� 5 variable:

var1 = 1431655765

var2 = 858993459

var3 = 252645135

var4 = 16711935

var5 = 65535

� 1 variable:

var1 = 1

 

Figure 1. Default values of basic BRC for each variable according to the 

number of variables present in the input function. 

 

variable in the input function. If the function has no more than 

five variables, it is performed a naïve assigning process, where 

each variable receive a BRC as shown in Figure 1. The data 

present in Figure 1 were generated by concatenating bits, a similar 

process of mounting a truth table. Figure 2 exemplifies that when 

considering two variables. 

 

� 2 variable:

var1 = 0000 0000 0000 0101 = 5

var2 = 0000 0000 0000 0011 = 3
 

Figure 2. BRC when considering two variables. 

 

When the function contains more than five variables, the process 

of generating basic BRC is modified. So, it is used a vector. For 

the first five variables, the same values are used for the five 

variables indicated in Figure 1. These values are written in all 

positions of the vector according to the corresponding variable. 

Then, for the first variable is assigned the value 1431655765 for 

all positions of the vector. This is done for all the next four 

variables, changing only the value of the assignment for each 

case. For the next variables it is performed a process in which it is 

concatenated the value of 0 and -1 at each position of vector. The 

number of concatenations of 0 and -1 required is indicated by 2n-5. 

This process resembles the method of assembling a truth table, 

where each variable is represented by a sequence of bits in the 

columns of the table. Figure 3 shows the reason for use 0 and -1 

during the basic BRC generation. 

 

0 0 0 0  . . .  0 0 0 0   1111  . . .  1111   0 0 0 0  . . .  0 0 0 0   1 111  . . .  1 111var6 =
127                                  96 95                                   64 63                                   32 31                                     0 

0 -1 0 -1
 

Figure 3. Splitting a bit sequence and associating to an 

equivalent integer. 

 

This whole process of generating basic BRC for a given function 

that contains more than five variables is shown in Figure 4. 

In a case where some variable of the function is negated, the 

process of basic BRC generation is the same. It will be assigned, 

for this negated variable, the value presented in Figure 1. The 

main difference is that bits that are 0 become 1, and those that are 

1 become 0. In a case where the function has more than five 

variables, it is performed the same procedure of concatenation 

explained before. The only difference is the order of 

concatenation of the values in vector. Firstly, it is concatenation 

the value -1. After that, the value 0 is concatenated. Figure 5 

shows a case of a random function that contains the third and 

seventh negated variables. 

 

� 7 variable:

1431655765 1431655765 1431655765 1431655765

858993459 858993459 858993459 858993459

252645135 252645135 252645135 252645135

16711935 16711935 16711935 16711935 

65535 65535 65535 65535 

0 -1 0 -1

0 0 -1 -1

var1 = 

var2 = 

var3 = 

var4 = 

var5 = 

var6 = 

var7 = 
 

Figure 4. Vectors with the values for each variable. 

 

-252645136 -252645136 -252645136 -252645136!var3 = 

-1 -1 0 0!var7 = 
 

Figure 5. Vectors with the values for each negated variable. 

 

After generating basic BRC, it is created the BRC for the entire 

function by using logical operations AND and OR. Expression 1 

shows the function used as example. 

A*C*E*F + A*B*F + A*B*!C + D*E*!G (Exp. 1) 

First it is obtained the BRC of the products through bitwise AND 

operation of each integer value present in a position of the vector 

with the other integer value of the corresponding position in the 

next vector. After that, it is performed the bitwise OR operation 

between the BRC generated before. Figure 6 shows a BRC 

generation of a product through a bitwise AND operation 

performed between each integer of vectors. 

After generating all BRC of the products, it is performed the 

bitwise OR operation between each position of vectors of each 

BRC of these products. This process is illustrated in Figure 7, 

which also shows the BRC of the function shown in Expression 1. 



 

 

 

16711935 16711935 16711935 16711935 D = 

65535 65535 65535 65535 E = 

-1 -1 0 0!G= 

255 255 0 0

AND AND AND AND

AND AND AND AND

D*E*!G = 

 

Figure 6. Generation of the BRC for the product D*E*!G. 

 

0 286331153 0 286331153A*B*F = 

0 1285 0 1285A*C*E*F =

OR OR OR OR

OR OR OR OR

269488144 269488144 269488144 269488144A*B*!C = 

OR OR OR OR

255 255 0 0D*E*!G = 

269488383 286332415 269488144 286332181Exp.1  =

 

Figure 7. Generation of the BRC for Expression 1. 

 

3. EXPERIMENTAL RESULTS 
The proposed method was implemented in Java using NetBeans 

IDE 7.0 and was integrated into the Soptimizer tool to be 

validated and tested as a case of study. In order to evaluate the 

efficiency of the proposed method, it was used as benchmark all 

functions from the 4-input p-class logic functions set [8]. This set 

is composed by 3982 Boolean functions. Also, it was used 54 

random logic functions with six input variables, called Random6. 

Apart from that, three functions were chosen for analysis. The 

XOR 4 was chosen because it is extremely used in several circuits 

such as adders and multipliers. Functions F5 and F13 [9, 10], 

were chosen because they contains a large number of variables if 

comparing to the 4-input p-class logic functions set. 

Table 1 presents the results obtained in terms of runtime. The 

column "Without BRC" shows the results when Soptimizer tool 

uses the old version algorithm to compare functions equivalence. 

This algorithm consists in traversing the graph and obtaining all 

cubes that compose the function. In the sequence, each cube 

obtained from the graph is compared to the ones from the input 

expression. The column "With BRC" shows the runtime when the 

proposed method is used. The column “Reduction” reports the 

percentage of gain and loss in runtime. These tests were executed 

on a computer with an Intel Pentium Dual Core T2370 1.73GHz, 

2GB of memory and Windows Seven Ultimate 64bit. 

As can be seen in the results of Table 1, for the benchmarks p-

class, Random6, XOR 4 and F13, the total runtime of the 

Soptimizer tool is smaller when using the proposed algorithm. 

However, for the benchmark F5, the obtained runtime was worst 

when using the proposed algorithm. The main reason for that is 

that the benchmark F5 contains large cubes, with few variables. In 

this situation the proposed algorithm presents a disadvantage if 

comparing to the old strategy usage by the Soptimizer tool. All the 

process to generate the BRC and compare them when necessary is 

more time consuming than just directly compare products stored 

in vector structures. Our method is able to deliver better results 

when there are several cubes to be checked in a SOP form. 

Also, a study was conducted to evaluate the individual runtime for 

each logic functions that compose the 4-input p-class benchmark. 

This way, it was possible to perform a better analysis in which 

functions the runtime was reduced. Figure 8 shows a graphic that 

summarizes these results. 
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Figure 8. Runtime comparison when using 4-input p-class benchmark 

to generate transistor networks in the Soptimizer tool. 



 

 

Table 1. Total runtime obtained by Soptimizer tool with and without using the BRC proposed method. 

Benchmark Number functions Number variable Without BRC With BRC Reduction 

p-class 3.982 4 2193 ms 1599 ms 27,1% 

Random6 54 6 189 ms 156 ms 17,5% 

XOR 4 1 4 57 ms 47 ms 17,6% 

F5 1 8 78 ms 100 ms -28,3% 

F13 1 10 546 ms 320 ms 41,4% 

 

4. CONCLUSIONS AND FUTURE WORK 
This paper presented a method to generate a Boolean 

Representation Code which can efficiently represent Boolean 

functions.  At a first moment, the proposed method was integrated 

into the Soptimizer tool to validate the optimization process of 

transistor networks. 

The method was validated using several Boolean functions with 

different number of input variables.  

The results demonstrated that the algorithm can minimize the total 

runtime when incorporated in a CAD tool. In the case of study, it 

was possible to achieve an average gain of 27.1% in runtime when 

considering 4-input p-class benchmark.  

As future work, more tests will be performed considering different 

benchmarks. Also, it is intended to incorporate the proposed 

method into other Boolean evaluation algorithms developed by 

the group, especially in those related to technology mapping. 
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