
A Comparison Between High Throughput Configurable
FFT/IFFT Processors

Renan Netto, Pedro Michel and José Luís Güntzel
Embedded Computing Lab. - Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil

renan77@inf.ufsc.br, pedromichel@grad.ufsc.br, guntzel@inf.ufsc.br

ABSTRACT
This paper presents three configurable Fast Fourier Transform
(FFT) processors based upon the well-known Single-Path Delay
Feedback (SDF) architecture. The three processors may be
configured to compute the FFT/IFFT of 64 to 2048-point
sequences and differ by the basic processing block, which is the
radix-2, radix-22 or radix-4 butterfly. Their architectures were
described in Verilog and synthesized for a 90nm commercial
standard-cells library by using Synopsys Design Compiler tool.
The SQNR values were evaluated by comparing the results
provided by the designed FFT/IFFT processors to that obtained
from a software implementation of the FFT/IFFT algorithm.
Synthesis results show that the radix-4 based processor requires
3% less area and consumes 4.7% more energy than the radix-2
based one and thus may be used when silicon area is more
important than energy. On the other hand, the radix-22 based
architecture requires 4.8% less area than the radix-2 one at a cost
of 102% increase in critical delay, resulting in poor energy
efficiency.

Categories and Subject Descriptors
D.3.3 [Integrated Circuits]: Types and Design Styles –
algorithms implemented in hardware.

General Terms
Design.

Keywords
FFT; DIF; DIT; Radix-2; Radix-22; Radix-4; butterfly.

1. INTRODUCTION
Wireless communication is becoming a must in electronic
products. Currently, it is found not only in personal portable
devices but also in printers, keyboards, mice, among many others.
Since such products have distinct operation features, new wireless
communication protocols, more suited for specific applications,
are being devised. The modulation/demodulation used in Wireless
communication usually requires the application of the Discrete
Fourier Transform (DFT) and the Inverse Discrete Fourier
Transform (IDFT).

The original DFT algorithm has an O(n²) complexity and,
therefore, is not used in direct hardware realizations [1]. A lower
complexity DFT form, referred to as Fast Fourier Transform
(FFT) algorithm, is used instead. The FFT algorithm has come
into focus through a paper by Cooley and Tukey [2] in 1965.
Also, the Inverse Fast Fourier Transform (IFFT) is used to
calculate the IDFT.
While aiming current electronic devices, to meet the requirements
in a single solution, we present and evaluate three high throughput

configurable FFT/IFFT processors to calculate
64/128/256/512/1024/2048-point FFT/IFFT based on the Single-
Path Delay Feedback (SDF) architecture [3].

The proposed configurable FFT/IFFT processors were modeled in
Verilog HDL and synthesized to a commercial 90nm standard-
cells library using Synopsys Design Compiler tool [4]. The
processors were validated through the simulation of testbenches in
ModelSim environment. The SQNR in FFT/IFFT calculation was
also evaluated.

The remaining of this paper is organized as follows. Section 2
presents the chosen decomposition of the FFT/IFFT algorithm.
Section 3 highlights the main characteristics of the basic Single-
Path Delay Feedback (SDF) architecture, the radix and
configurability changes. Section 4 presents the synthesis results
and establishes comparisons between each processor. Finally,
section 5 draws some conclusions and comments on future works.

2. BASIC FFT/IFFT ALGORITHM
The Discrete Fourier Transform (DFT) for an N-point sequence
x(n) is given by (1), where X(k) and x(n) are complex numbers, n
is the time index and k is the frequency index [1]. By using this
equation the DFT computation requires N² complex
multiplications and N(N–1) complex additions, leading to a
complexity of O(N²). In [2] Cooley and Tukey proposed (actually
they "rediscovered") an algorithm to compute the DFT with
complexity O(N.log2N). Such algorithm, known as Fast Fourier
Transform (FFT), is widely used in hardware accelerators.

€

X k()= x
n=0

N −1
∑ n()⋅ e

− j2πkn
N (1)

Direct hardware implementations of the FFT algorithm either use
the Decimation in Time (DIT) decomposition or the Decimation
in Frequency (DIF) decomposition [1], the latter used in this
work. In the DIF approach an N-point DFT is decomposed into
two N/2-point DFTs, one for the even-indexed frequency outputs
and another for the odd-indexed frequency outputs. The inputs to
the even-indexed outputs N/2-point DFT are sums between first
half inputs and second half inputs. The inputs to the odd-indexed
outputs N/2-point DFT are differences between first half inputs
and second half inputs, multiplied by constants that are referred to
as "twiddle factors".

Each N/2-point DFT may be further decomposed into two N/4-
point DFTs. Such decomposition may be applied recursively until
reaching 2-point DFTs, which can be assumed as basic
computation elements. Figure 1 shows in detail the signal flow
chart (SFG) for an 8-point DIF FFT.

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

Figure 1. Signal flow graph (SFG) for 8-point DIF FFT.

A 2-point FFT processing element, normally referred to as
"butterfly", is composed by one complex multiplication, one
complex addition and one complex subtraction. Therefore, an N-
point FFT has log2N stages where each stage has N/2 complex
multiplications, N/2 complex additions and N/2 complex
subtractions, resulting in O(N.log2N) complexity, which is
significantly lower than that of a direct implementation of (1)

The Inverse Discrete Fourier Transform (IDFT) is given by (2).
As it can be seen, the same algorithm used to calculate the DFT
can be used to calculate the IDFT, with minor changes (the sign of
the imaginary part of the coefficients in the multiplication and a
division by N of the final results).

€

x n()= 1
N

X
k=0

N −1
∑ k()⋅ e

j2πkn
N (2)

3. R2SDF-BASED FFT/IFFT
CONFIGURABLE PROCESSOR
We have designed three dedicated processors that can be
configured to compute the FFT/IFFT for sequences with 64, 128,
256, 512, 1024 or 2048 points. The processors' architectures are
based upon the well-known Single-Path Delay Feedback (SDF)
architecture [3], which was carefully modified to allow the desired
configurability. Also, three versions of the same architecture were
designed: the first one using Radix-2 butterflies on the whole
processor, the second one using Radix-4 butterflies on the last
stages of the processor and the third one using Radix-2² butterflies
on the last stages of the computation. Hereafter, these three
processors will be called, respectively, CR2SDF, CR4SDF and
CR2²SDF.

The original R2SDF architecture datapath is built up from the
basic stage, shown in Figure 2, which is composed by one radix-2
butterfly (either DIF or DIT), a ROM memory (to hold the stage
twiddle factors), two multiplexers and a delay element ("D"). Both
ROM memory and delay element were implemented using
registers. The delay element is organized as a FIFO (first-in first-
out) structure, being able to store N/2i inputs, where i=1 in the
first stage and i=log2N in the last stage (N is the total number of
points in a sequence i.e., the inputs applied to the first stage). At
the beginning, the first N/2i inputs to the stage are fed into the
FIFO, one after another. As a second step, each of the second N/2i
inputs is directly applied to the butterfly along with each of the
inputs previously stored in the FIFO. Then, the resulting lower
butterfly output is fed back to the FIFO while the resulting upper
butterfly output is fed to stage i+1. Considering the described
behavior, one can notice that the R2SDF architecture is used only

during 50% of the time to operate on a new pair of inputs, thus
staying idle during other 50%

Figure 3 shows the simplified datapath block diagram of the
designed CR2SDF FFT/IFFT processor. It is composed by 11
stages, being the first 10 stages similar to the one shown in Figure
2. The last stage (i=11) was simplified, since it needs only one
twiddle factor. Multiplexers were added to some stages to provide
the desired configurability according to the desired number of
points: 64, 128,256, 512, 1024 or 2048. To allow the
configurability between FFT and IFFT the complex multiplier
inside each butterfly was appropriately modified. As long as all of
the possible numbers of points are powers of 2, the division by N
in the IFFT can easily be done by shifting the result to the right.
Besides the datapath of Figure 3, the CR2SDF processor has a
control block that generates the addresses used to access the
twiddle factors in the corresponding ROMs. In order to implement
the control block we have chosen the DIF decomposition, since it
allows for a less complex circuitry.

As the lowest number of points that will be calculated is 64, only
the last stages of the CR2SDF processor can be rearranged using
higher radix butterflies.

The CR4SDF processor datapath is built in a similar way than the
CR2SDF one, with a few differences on its basic stage. The basic
stage of the C4RSDF processor is shown in Figure 4 and is
composed by one radix-4 butterfly, three ROM memories (to hold
the stage twiddle factors), six multiplexers, with two of them
being a three-input multiplexer and three delay elements. Both
ROM memory and delay elements were implemented the same
way than the CR2SDF processor. Each delay element is able to
store N/4i inputs, where i is the stage. At the beginning, the first
N/4i inputs to the stage are fed into the first FIFO, one after
another. The second and third steps are similar, except that the
next N/4i inputs are fed to the second and third FIFO,
respectively. The last N/4i inputs are directly applied to the
butterfly along with each of the inputs, previously stored in the
FIFOs. Then, the resulting three lower butterfly outputs are fed
back to the FIFOs while the resulting upper butterfly output is fed
to stage i+1. Unlike in the CR2SDF processor, in the CR4SDF
processor the butterfly is used only 25% of the time to operate on
a new group of inputs, therefore staying idle during the other
75%.

Figure 2. The i-th stage in the R2SDF architecture datapath.

Figure 3. Datapath block diagram for the CR2SDF processor.

The CR2²SDF processor datapath is also built up in a similar way
than the CR2SDF, with the basic stage shown of Figure 5. Its
basic stage is composed by two CR2SDF basic stages
interconnected. However, there is no multiplier between them.
This occur because the multiplication between these two basic
stages can be done only switching the real and imaginary parts of
the input and inverting the operations of the second CR2SDF
stage. The others characteristics of the CR2²SDF are the same
than the CR2SDF one, except that the twiddle factors in each
stage are different and, unlike the CR2SDF processor, the
multiplier cannot be removed from the critical path. Once the
behavior of the CR2²SDF processor is similar to that of the
CR2SDF processor, it can be inferred that the butterfly of the
CR2²SDF processor stays idle during the same amount of time
than the CR2SDF's butterfly.

It is important to notice that, in all three processors, the butterfly
upper output of a given stage i is directly fed to the butterfly input
in stage i+1. This way, there is a long combinational path that
begins at the lower input of the first stage butterfly, traverses all
stages and ends at the upper output of the last stage butterfly.
However, at every clock edge, a new point is applied to the first
stage input, while the contents of the first stage FIFO is shifted.
This assures high throughput because the data is forced to move
forwards along this combinational path at every clock edge,
making the datapath to behave as a “wave pipeline”.

Figure 4. Radix-4 Butterfly.

4. SYNTHESIS RESULTS
The three processors were modeled in Verilog HDL and
synthesized to a commercial 90nm standard-cells library using
Synopsys Design Compiler tool [4]. The synthesis results,
summarized in Table 1, can be used to compare CR22SDF and
CR4SDF to CR2SDF.

This table shows that the CR2²SDF processor requires 4.8% less
area than the CR2SDF processor and dissipates 3% less power.
On the other hand, its critical delay is 2.02 times greater than that
of the CR2SDF processor, resulting in severe performance
degradation since it has the same throughput (in cycles) than the
CR2SDF.

Synthesis results also show that the CR4SDF processor requires
3.5% less area than the CR2SDF processor and dissipates 1% less
power at a cost of 4% increase in critical delay.

Table 1. Synthesis results of the three processors

 CR2SDF CR2²SDF CR4SDF

Total Area
(µm2) 2,614,281 2,488,299 2,522,842

Total Power
(mW) 69.32 67.05 68.96

Worst Timing
Path (ns) 7.08 14.28 7.41

Figure 5. Radix-22 Butterfly.

Based on the different worst timing paths of the processors, their
latencies and execution times were calculated for each possible
number of points. These results are shown on Table 2 and Table 3.
From table 2 it becomes evident the penalty in both execution
time and latency resulted from the longer critical delay of the
CR22SDF, which is not compensated by the power reduction nor
by the area savings. In the case of the CR4SDF processor, the 4%
increase in critical delay (and the resulting performance
degradation) is compensated by the small area savings.

Table 2. Latency (ns)

of points CR2SDF CR2²SDF CR4SDF

64 1798.32 3627.12 1882.14

128 3610.80 7282.80 3779.10

256 7235.76 14594.16 7573.02

512 14485.68 29216.88 15160.86

1024 28985.52 58462.32 30336.54

2048 57985.20 116953.20 60687.90

Table 3. Execution Time (ns/sequence)

of points CR2SDF CR2²SDF CR4SDF

64 906.24 1827.84 948.48

128 1812.48 3655.68 1896.96

256 3624.96 7311.36 3793.92

512 7249.92 14622.72 7587.84

1024 14499.84 29245.44 15175.68

2048 28999.68 58490.88 30351.36

The energy consumption of the processors was also calculated for
each possible number of points and considering power and critical
delay estimated in synthesis. Table 4 shows these results. As it
can be seen, when processing the same number of points,
CR2²SDF and CR4SDF consume more energy than CR2SDF.

Table 4. Energy (mJ)

of points CR2SDF CR2²SDF CR4SDF

64 62.83 122.55 65.40

128 125.66 245.10 130.81

256 251.31 490.20 261.61

512 502.62 980.40 523.23

1024 1005.24 1960.80 1046.46

2048 2010.49 3921.59 2092.91

To verify the designed processor, a script in Python language was
written to generate appropriate random inputs, which were used
only to verify the functionality by calculating an FFT/IFFT using
the three processors and a software solution based on the FFTW
library [5], written in C language. After that, the signal-to-
quantization-noise ratio (SQNR) values of the designed processor
were calculated. The results showed that the processors achieved a
good precision, the lowest SQNR value was 62.4204 dB.

5. CONCLUSIONS
This paper presented three FFT/IFFT processors that can be
configured to process 64/128/256/512/1024/2048-point
sequences. These FFT processors were modeled with Verilog
HDL and synthesized into a 90nm commercial standard-cells
library. Synthesis results were compared to CR2SDF.
All three FFT processors presented a good precision compared to
an FFT software implementation: the lowers SQNR value was
62.4204dB.
Synthesis results show that, for the considered SDF architecture,
using registers to implement the delay elements and twiddle
ROMs, the CR4SDF processor requires 3.5% less area and
consumes 4.7% more energy than the CR2SDF for the same
number of points. Although there is no significant difference
between CR4SDF and CR2SDF architectures, designers can
tradeoff between them considering the application requirements.

Although the area reduction (4.8%) in relation to CR2SDF
architecture, the longer critical delay of the CR22SDF makes it the
worst choice among the three considered FFT/IFFT architectures.

As future works we intend to devise several architectural
modifications in the CR2SDF datapath to reduce hardware cost
and to increase energy efficiency as well. Also, we intend to
synthesize two new versions, one using a 64-points basic stage
and other fully combinational.

6. ACKNOWLEDGMENTS
This work was partially supported by the Brazilian Council for the
Scientific and Technological Development (CNPq), through the
INCT-Namitec Project (under contract 573738/2008-4) and PIBIC
Program.

7. REFERENCES
[1] Oppenheim, A. V., and Schafe, R. W. 1989. Discrete-time

signal processing. Prentice Hall, Englewood Cliffs.
[2] Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the

machine calculation of complex Fourier series. Math.
Comput, 19 (Apr. 1965), 297-301.

[3] Groginsky, H. L., and Works, G.A. 1970. A Pipeline Fast
Fourier Transform. IEEE Transactions on Computers, C-19
(Nov. 1970), 1015-1019.

[4] Synopsys, Inc, <http://www.synopsys.com/home.aspx>
Accessed in February 2012.

[5] FFTW, <http://www.fftw.org/>. Accessed in January 2012.

