
EVALUATING TECHNOLOGY MAPPING METHODS FOR

QCA DEVICES

Stéphano Gonçalves, Julio S. Domingues Jr, Melissa S.R. Colvara,
Leomar S. da Rosa Jr, Felipe S. Marques

Group of Architectures and Integrated Circuits – GACI
Technology Development Center - CDTec

Federal University of Pelotas – UFPel
Pelotas, RS, Brazil

{smmgoncalves, jsdomingues, mdsrcolvara, leomar, felipem}@inf.upel.edu.br

ABSTRACT

The CMOS technology is reaching its physical limits. The

Quantum Cellular Automata (QCA) is an emerging computation

technology with great potential to replace the CMOS technology.

However, there is no complete mapping flow for this technology.

This paper presents an analysis of technology mapping methods

aiming QCAs devices. Based on that, we present some results that

show a gap between the state of art on QCA synthesis and the

regular mapping tools. Therefore, in the future, we intend to

introduce an efficient mapping algorithm to handle QCA devices.

In order to achieve it, we propose a generic mapping flow that is

able to use different mapping procedures aiming a given

technology. The crossover of these methods can result in a good

mapping methodology.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids – automatic synthesis,

optimization.

General Terms

Algorithms, Design, Experimentation.

Keywords

Logic Synthesis, Technology Mapping, QCA.

1. INTRODUCTION

The design of VLSI circuits is very demanding since it is

necessary to develop circuits with higher performance and lower

power consumption. This is not a trivial task, and this is why

designers need support tools that automate and reduce the time-to-

market. A circuit design cycle has several steps. However,

technology mapping plays an important role in the synthesis

process, defining the main characteristics of a circuit, concerning

area, power consumption and delay. Technology mapping define

which cells will be used in the circuit design. The quality of the

mapping is directly related to the quality of the cell library.

Currently, designers of VLSI circuit are facing another problem:

the CMOS technology is reaching its physical limits. Therefore, it

is difficult for designers to perform optimizations and

improvements on the circuit design. Recent researches point out

new technologies to replace the regular CMOS. Most of them are

related to quantum computing. One of these alternatives is the

QCA (Quantum Cellular Automata) that emerges as a strong

candidate. The state of art works on QCA present some structures

to build digital circuits. They are: the QCA-Inverter, QCA-Wire

and QCA-Majority Gate. As far as we know, there is one

straightforward method to perform technology mapping using

QCA designs [1]. However, the state of art method, proposed in

[5], presents better results than the method of [1]. In [2], a

handmade set of 13 majority gates is presented and it is

demonstrated that this small library can be used to map a circuit.

A set of AOI (And Or Inverter) gates implemented with QCA

technology is presented in [3]. These cells can produce

satisfactory results in the existing tools. However, the cost of

these cells is too expensive when compared to majority gates. A

series of adders designs implemented through QCA cells are

presented in [4]. Another recent work in this area [5] proposes a

set of scripts to perform automated synthesis for QCA devices on

SIS [14]. However, the method proposed in [5] is only able to

obtain the minimal majority gate arrangement for a given Boolean

function, but it does not achieve optimal results in the technology

mapping, as we will show in the experiments section.

None of these works presents a complete automatic flow to

efficiently map digital circuits using QCA designs. This paper

presents an analysis focusing on technology mapping for QCA

circuit designs. We intend to identify the main needs of a

technology mapping flow to handle QCA cells. In order to

analyze the impact of using different libraries, we have performed

experiments using three libraries (based on previous works) using

the standard cell mapping of the ABC tool [6].

In general, just like CMOS technology, the richer are the libraries

(in terms of number of Boolean functions), the better are the

mapping results (in terms of area - number of QCA devices).

Since the number of Boolean functions increases exponentially

according to the number of input variables, it is necessary to

automate the building process of a QCA library that uses only

Majority gates and inverters to implement arbitrary Boolean

functions. The library conception is not discussed on this paper.

Furthermore, some preliminary results show a gap between the

state of art on QCA synthesis and the regular mapping tools.

Based on that, in the future we intend to introduce an efficient

mapping algorithm to handle QCA devices combining different

mapping procedures in a generic mapping flow.

This paper is organized as follow. Section 2 presents some

background information about QCA technology and technology

mapping. Some experimental results are shown in section 3.

Section 4 presents an idea for a generic technology mapping flow.

Finally, section 5 presents our conclusions and points out some

future works.

alex
Text Box
SForum 2012 - Student Forum on Microelectronics
This work has been developed by the first author(s) in the scope of the undergraduate studies

2. BACKGROUND

This section reviews some important concepts for better

understanding the rest of the paper.

2.1. QCA Technology

A quantum cellular automata can be represented as a set of four

containers of quantum loads or dots, positioned at the corners of a

square shape. The cell contains two free electrons (located on

opposite diagonal) that can move through quantum mechanics

using a tunnel to one of two free points. The electrons are forced

to the opposite diagonal by Coulombic repulsion. These positions

represent the two possible logic states [4]: P = 1 representing the

logic state '1 'and P = -1 state '0'. These representing the logic

state '1 'and P = -1 state '0'. These states are shown in Fig.1.a.

The basic elements of the QCA logic are the QCA-Majority Gate,

QCA-Inverter and QCA-Wire. These elements are show

respectively in Fig.1 (a,b,c,d). The QCA-Majority gate is the main

structure and is composed of five QCA cells, as is illustrated in

Fig.1.b. This structure is able to represent the logic function M (a,

b, c) = ab + ac + bc. It has three input operators that can be used

to implement different Boolean according to the inputs.

2.2. Data Structures and Technology Mapping

Graphs are very useful data structures able to represent digital

circuits. Generally, these circuits are represented through trees or

DAGs (Directed Acyclic Graphs). Trees are simple data structures

that represent logic cones. This way they only represent

fragmented portions of the circuit. This is a good feature when the

best local solution is been looked for. On the other hand, in most

of the problems, it cannot reach the best global solution [7].

Currently, most of the methods can achieve better synthesis using

DAGs. In this case, this graphs can represent the whole circuit,

and avoid local minima. Among different DAG types, the most

popular for digital circuit representation is the AIG (And-Inverter

Graph). It has a very simple structure defined in [8] that makes

most of the synthesis process easier.

As mentioned before, technology mapping is an important stage

of the logic synthesis. It can be divided into three steps:

decomposition, matching and covering [7]. In the decomposition

step, a more complex circuit representation is decomposed in a

more simple structure such as an AIG. The matching phase

compares portions of the circuit with a bound library. This way,

the mapping procedure can identify those library cells that can

implement a portion of the circuit. The last stage is called

covering. In this step, the mapping procedure chooses the best set

of cells to implement the circuit among those identified in the

matching phase, and based on some criteria. A cell library is

defined by finite set of cells that can implement different logic

functions. Either the library may be pre-characterized (where the

characteristics of each cell are previously identified and

computed) or it may be dynamic (where cells designed according

to the needs of the circuit).

3. EXPERIMENTS

Currently, the main goal of QCA synthesis is to achieve smallest

number of majority gates and inverters needed to implement a

given digital circuit. In order to analyze how good is the synthesis

achieved by the state of art technology mapping algorithms

considering QCA devices, we have run a set of experiments on the

ABC tool.

a)

c)

d)

b)

Quantum Dots

Electrons

P = -1 (Logic 0) P = +1 (Logic 1)

Input Cell Information Propagation

Input Cell

1 0

Output Cell

Output

Cell

Input B

Input C

Input A

1

1

0

1

Device Cell

Figure1 - Basic elements of QCA technology

For these experiments, a subset of the ISCAS benchmarks were

used. We have run the library mapping method of ABC using

three different libraries for each circuit. The library mapping is

performed through the command map. The algorithm [11] which

implements the mapping is based on a simplified cut-based

Boolean matching, lossless synthesis and supergates. The

command map with the –a flag (indicating area oriented mapping

only) were run ten times for each circuit (it is an iterative

incremental process). Each mapped circuits was written into a

Netblif file. Through this, we could identify the relative costs of

each circuit. The cost of a circuit is the sum of the costs of all

majority gates and inverters contained in the circuit. Based on the

relation proposed in [3], the costs three and five were assigned to

majority gates and inverters, respectively. These costs are

proportional to the size of the single quantum cell. It means that

the majority gate (inverter) is three (five) times bigger than a

single quantum cell.

Table 1 shows a comparison between the ABC mapping and the

numbers of the Kong's synthesis [5]. The "Basic" column

corresponds to a simple library that is composed by a majority

gate, an inverter, an AND2 (due to restrictions on ABC - this cell

can be implemented through a Majority gate) and the constants

ZERO and ONE. The third column corresponds to an expanded

library which contains the thirteen functions defined in [2]. The

fourth column has forty primitive functions which can be

implemented by a single majority gate. The library proposed in

[5] contains only three functions included in the library of [2].

This library is the same library used in the experiments performed

in [5]. The last column corresponds to results presented by Kong

[5]. The circuits mapped with the basic library presents highest

costs. This is expected since it is a very simple library. In most

cases the larger libraries tended to have the better results.

However, it does not happen in all cases when comparing circuits

mapped with the libraries proposed by [2] and [5]. The library

proposed in [2] has more complex cells then the cells presented in

[5].

Table 1 - Comparison between ABC mapping ans Kong's

method.

Circuit
ABC

Kong's method [4]
Basic [1] [4]

9symml 1306 844 630 256

alu2 2288 1496 1305 1555

apex6 4230 3426 2168 2776

cht 1054 464 474 405

cm150a 318 163 163 238

cm151a 201 101 91 119

cm152a 168 68 78 98

cm162a 214 161 159 193

cm163a 206 153 156 199

cm42a 121 121 71 84

cm82a 127 24 77 51

cm85a 214 177 144 78

cmb 216 184 158 104

cu 247 182 187 225

decod 110 110 110 114

frg1 691 500 386 620

i2 1730 1656 641 627

k2 5062 4720 3458 4998

ldd 386 341 234 321

majority 48 33 18 18

mux 308 208 158 198

pcle 384 289 189 271

pcler8 469 364 234 315

pm1 204 170 160 185

term1 842 509 575 568

ttt2 938 573 571 695

unreg 871 426 386 417

vda 2316 2244 1574 2810

x2 243 201 153 186

z4ml 229 36 154 57

Even though the library in [2] has a smaller number of functions,

it can achieve better results depending on the circuit structure. In

most of the cases, the Kong's library [5] presents better results.

When compared to the Kong's method, the ABC method is worse

in few cases. It shows that even compared to the state of the art

tool, the Kong's method has some tricks that leads to better

results. As conclusion, we can say that the ABC method is not

good enough, and it can be improved and optimized to achieve

better solutions.

Fig. 2 presents a graphic that summarizes the results of Table 1. It

shows the sums of the costs of all circuits for a given library. It is

clear that the ABC mapping is more efficient for the whole set of

circuit.

Figure 2 – Table 1 graphic summarization.

4. GENERIC MAPPING FLOW

The experimental results show us that the regular technology

mapping could be improved to achieve better results on QCA

technology. In fact, it could be something that can be done to any

other technology. Until now, the methodology proposed in ABC

is based on a bunch of logic synthesis concepts and algorithms

that leads to good practical results either on FPGA or standard

cell (mainly CMOS) synthesis. Kong [5] has used the same

algorithms applied in a different methodology, and it has been

shown that his proposition can achieve good results in some

cases.

At the end, the difference between ABC mapping and the Kong’s

method is the order and the way that they apply a bunch of logic

synthesis algorithms on their methods. Therefore, it would be nice

to have an environment where we could specify a mapping

methodology in a high abstraction level. It would allow us to

quickly prototype different mapping methods and eventually

apply it on different technologies.

The ABC tool is an open source academic software that allows the

development of new methods using C/C++ programming

language. Although it has a pretty good documentation, further

developments on this environment are not going to result in a

quickly prototyping. Thus we intent to present a generic mapping

flow that should provide an environment to quickly prototype new

mapping methodologies. Moreover, it should give some didactic

support for educational purposes.

In an early stage of development, we do have a baseline flow that

is been validated. Currently, it is able to read AIGER [7], BLIF

(Berkeley Logic Interchange Format) and EQN (Equation format)

files. These descriptions are represented through a unified AIG

based data structure. Using this structure, we are able to perform

either DAG or tree mapping. The matching phase relies on k-cut

enumeration [13] and the Boolean matching algorithm presented

in [10]. The covering procedure is based on [9][12].

The next step is the definition of a software engineering model

that will be the basis of our generic technology mapping flow. The

word “generic” means that we would like to specify a technology

mapping method in a high abstraction level and ease the

integration processes of other algorithms. This way, we could

create new methodologies combining different algorithms for

matching and covering. In addition, we could also specify

different objective functions for a given methodology. All these

features would allow us to quickly prototype new technology

mapping methods.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a comparison between the ABC logic

synthesis tool [6] and the state of art on QCA synthesis [5]. It is

clear that there is a gap between their technology mapping

methods. Using the QCA library presented in [5], the ABC

mapping has presented better results in most of cases. However,

the Kong’s method [5] presents pretty good results in other cases.

Therefore, the regular technology mapping could be improved to

achieve better results on QCA technology. Besides the mapping

method itself, the QCA library could be improved by increasing

the number of available Boolean functions. This would lead to

area reduction.

The lack of a quickly prototyping environment for technology

mapping has motivated us to start the development of a generic

technology mapping flow. This flow should allow the

specification of a technology mapping method in a high

abstraction level and ease the integration processes of other logic

synthesis algorithms. It would allow us to quickly prototype

different mapping methods and eventually apply it on different

technologies. As future works, we intend to extend the mapping

experiments by using augmented libraries. Furthermore, by

experimenting different mapping procedures, we could be able to

propose a new algorithm for the QCA technology.

6. ACKNOWLEDGMENTS

Research partially funded by CNPq and FAPERGS Brazilian

funding agencies under grant 11/2053-9 (Pronem) and 11/1925-8

(ARD).

7. REFERENCES

[1] Zhang, R.; Gupta, P.; Jha, N.K.. 2005. "Synthesis of majority

and minority networks and its applications to QCA, TPL and SET

based nanotechnologies," VLSI Design, 2005. 18th International

Conference on, vol., no., pp. 229- 234, 3-7 (Jan. 2005).

[2] Zhang, R., Walus, K., Wang, W., and Graham, A. J.. 2004 “A

method of majority logic reduction for quantum cellular

automata”. IEEE Transactions on Nanotechnology, 3(4), pp. 443-

450, (Dec.2004).

[3] Momenzadeh, M., Huang, J., Tahoori, M. B., and Lombardi,

F..2005. “Characterization, test, and logic synthesis of and-or-

inverter (AOI) gate design for QCA implementation”. IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 24(12), pp. 1881-1893. (Dec. 2005).

[4] Cho, H. and Swartzlander Jr., E. E. “Adder designs and

analyses for quantum-dot cellular automata”. 2007. IEEE

Transactions on Nanotechnology, 6(3), pp. 374-383. (May.

2007).

[5] Kong, K., Lu, R., and Shang, Y. “An optimized majority logic

synthesis methodology for quantum-dot cellular automata”. 2010.

IEEE Transactions on Nanotechnology, 9(2), pp. 170-183. (Mar.

2010).

[6] Mishchenko, A.; Chatterjee, S.; Brayton, R.; Wang, X.; Kam,

T. “Technology Mapping with Boolean Matching, Supergates and

Choices”. ERL Technical Report, [S.l.],

http://www.eecs.berkeley.edu/ alanmi/abc/abc.htm, 2005

[7] Marques, F. d. S. “Technology Mapping for Virtual Libraries

Based on Cells with Minimal Transistor Stacks”. PhD thesis.

University Federal of Rio Grande do Sul-UFRGS, Porto Alegre,

Brazil, 2008.

[8] AIGER format. Available in http://fmv.jku.at/aiger/, 2012

[9] Manohararajah, V., D.Brown, S., and Vranesic, Z., “Heuristics

for area minimization in LUT-based FPGA technology mapping,"

IEEE Transactions On Computer-Aided Design Of Integrated

Circuits And Systems 25(11), pp. 2331-2340, Nov. 2006.

[10] Debnath, D.; Sasao, T. “Efficient Computation of Canonical

form for Boolean matching in large libraries”. .2004. Design

Automation Conference, 2004. Proceedings of the ASP-DAC

2004. Asia and South Pacific, Page(s): 591- 596, 2004.

[11] Chatterjee, S.; Mishchenko, A.; Brayton, R.; Wang, X.; Kam,

T. “Reducing Structural Bias in Technology Mapping”.2006.

Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on. 25(6), pp. 2894 – 2903, Dec. 2006.

[12] Mishchenko, A., Chatterjee, S., Brayton, R., “Improvements

to Technology Mapping for LUT-Based FPGAs”. 2006. Int’l

Symp. on FPGA, 2006.

[13] Cong J., Wu, C., Ding, Y., “Cut Ranking and Pruning:

Enabling A General and Efficient FPGA Mapping Solution”.

1999. Int’l Symp. on FPGA, 1999.

[14] Sentovich, E. et al. “SIS: A system for sequential circuit

synthesis.”1992. Berkeley: EECS Department, University of

California, 1992. (TR UCB/ERL M92/41)

