
EVALUATING TECHNOLOGY MAPPING METHODS FOR 

QCA DEVICES 

Stéphano Gonçalves, Julio S. Domingues Jr, Melissa S.R. Colvara, 
Leomar S. da Rosa Jr, Felipe S. Marques  

Group of Architectures and Integrated Circuits – GACI 
Technology Development Center - CDTec 

Federal University of Pelotas – UFPel 
Pelotas, RS, Brazil 

{smmgoncalves, jsdomingues, mdsrcolvara, leomar, felipem}@inf.upel.edu.br 
 

ABSTRACT 

The CMOS technology is reaching its physical limits. The 

Quantum Cellular Automata (QCA) is an emerging computation 

technology with great potential to replace the CMOS technology. 

However, there is no complete mapping flow for this technology. 

This paper presents an analysis of technology mapping methods 

aiming QCAs devices. Based on that, we present some results that 

show a gap between the state of art on QCA synthesis and the 

regular mapping tools. Therefore, in the future, we intend to 

introduce an efficient mapping algorithm to handle QCA devices. 

In order to achieve it, we propose a generic mapping flow that is 

able to use different mapping procedures aiming a given 

technology. The crossover of these methods can result in a good 

mapping methodology.  

Categories and Subject Descriptors 

B.6.3 [Logic Design]: Design Aids – automatic synthesis, 

optimization. 

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Logic Synthesis, Technology Mapping, QCA. 

1. INTRODUCTION 

The design of VLSI circuits is very demanding since it is 

necessary to develop circuits with higher performance and lower 

power consumption. This is not a trivial task, and this is why 

designers need support tools that automate and reduce the time-to-

market. A circuit design cycle has several steps. However, 

technology mapping plays an important role in the synthesis 

process, defining the main characteristics of a circuit, concerning 

area, power consumption and delay. Technology mapping define 

which cells will be used in the circuit design. The quality of the 

mapping is directly related to the quality of the cell library. 

Currently, designers of VLSI circuit are facing another problem: 

the CMOS technology is reaching its physical limits. Therefore, it 

is difficult for designers to perform optimizations and 

improvements on the circuit design. Recent researches point out 

new technologies to replace the regular CMOS. Most of them are 

related to quantum computing. One of these alternatives is the 

QCA (Quantum Cellular Automata) that emerges as a strong 

candidate. The state of art works on QCA present some structures 

to build digital circuits. They are: the QCA-Inverter, QCA-Wire 

and QCA-Majority Gate. As far as we know, there is one 

straightforward method to perform technology mapping using 

QCA designs [1]. However, the state of art method, proposed in 

[5], presents better results than the method of [1]. In [2], a 

handmade set of 13 majority gates is presented and it is 

demonstrated that this small library can be used to map a circuit. 

A set of AOI (And Or Inverter) gates implemented with QCA 

technology is presented in [3]. These cells can produce 

satisfactory results in the existing tools. However, the cost of 

these cells is too expensive when compared to majority gates. A 

series of adders designs implemented through QCA cells are 

presented in [4]. Another recent work in this area [5] proposes a 

set of scripts to perform automated synthesis for QCA devices on 

SIS [14]. However, the method proposed in [5] is only able to 

obtain the minimal majority gate arrangement for a given Boolean 

function, but it does not achieve optimal results in the technology 

mapping, as we will show in the experiments section.  

None of these works presents a complete automatic flow to 

efficiently map digital circuits using QCA designs. This paper 

presents an analysis focusing on technology mapping for QCA 

circuit designs. We intend to identify the main needs of a 

technology mapping flow to handle QCA cells. In order to 

analyze the impact of using different libraries, we have performed 

experiments using three libraries (based on previous works) using 

the standard cell mapping of the ABC tool [6]. 

In general, just like CMOS technology, the richer are the libraries 

(in terms of number of Boolean functions), the better are the 

mapping results (in terms of area - number of QCA devices). 

Since the number of Boolean functions increases exponentially 

according to the number of input variables, it is necessary to 

automate the building process of a QCA library that uses only 

Majority gates and inverters to implement arbitrary Boolean 

functions. The library conception is not discussed on this paper. 

Furthermore, some preliminary results show a gap between the 

state of art on QCA synthesis and the regular mapping tools. 

Based on that, in the future we intend to introduce an efficient 

mapping algorithm to handle QCA devices combining different 

mapping procedures in a generic mapping flow. 

This paper is organized as follow. Section 2 presents some 

background information about QCA technology and technology 

mapping. Some experimental results are shown in section 3. 

Section 4 presents an idea for a generic technology mapping flow. 

Finally, section 5 presents our conclusions and points out some 

future works. 
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2. BACKGROUND 

This section reviews some important concepts for better 

understanding the rest of the paper. 

2.1. QCA Technology 

A quantum cellular automata can be represented as a set of four 

containers of quantum loads or dots, positioned at the corners of a 

square shape. The cell contains two free electrons (located on 

opposite diagonal) that can move through quantum mechanics 

using a tunnel to one of two free points. The electrons are forced 

to the opposite diagonal by Coulombic repulsion. These positions 

represent the two possible logic states [4]: P = 1 representing the 

logic state '1 'and P = -1 state '0'. These representing the logic 

state '1 'and P = -1 state '0'. These states are shown in Fig.1.a. 

The basic elements of the QCA logic are the QCA-Majority Gate, 

QCA-Inverter and QCA-Wire. These elements are show 

respectively in Fig.1 (a,b,c,d). The QCA-Majority gate is the main 

structure and is composed of five QCA cells, as is illustrated in 

Fig.1.b. This structure is able to represent the logic function M (a, 

b, c) = ab + ac + bc. It has three input operators that can be used 

to implement different Boolean according to the inputs. 

2.2. Data Structures and Technology Mapping 

Graphs are very useful data structures able to represent digital 

circuits. Generally, these circuits are represented through trees or 

DAGs (Directed Acyclic Graphs). Trees are simple data structures 

that represent logic cones. This way they only represent 

fragmented portions of the circuit. This is a good feature when the 

best local solution is been looked for. On the other hand, in most 

of the problems, it cannot reach the best global solution [7]. 

Currently, most of the methods can achieve better synthesis using 

DAGs. In this case, this graphs can represent the whole circuit, 

and avoid local minima. Among different DAG types, the most 

popular for digital circuit representation is the AIG (And-Inverter 

Graph). It has a very simple structure defined in [8] that makes 

most of the synthesis process easier. 

As mentioned before, technology mapping is an important stage 

of the logic synthesis. It can be divided into three steps: 

decomposition, matching and covering [7]. In the decomposition 

step, a more complex circuit representation is decomposed in a 

more simple structure such as an AIG. The matching phase 

compares portions of the circuit with a bound library. This way, 

the mapping procedure can identify those library cells that can 

implement a portion of the circuit. The last stage is called 

covering. In this step, the mapping procedure chooses the best set 

of cells to implement the circuit among those identified in the 

matching phase, and based on some criteria. A cell library is 

defined by finite set of cells that can implement different logic 

functions. Either the library may be pre-characterized (where the 

characteristics of each cell are previously identified and 

computed) or it may be dynamic (where cells designed according 

to the needs of the circuit). 

3. EXPERIMENTS 

Currently, the main goal of QCA synthesis is to achieve smallest 

number of majority gates and inverters needed to implement a 

given digital circuit. In order to analyze how good is the synthesis 

achieved by the state of art technology mapping algorithms  

considering QCA devices, we have run a set of experiments on the 

ABC tool. 
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Figure1 - Basic elements of QCA technology 

 

For these experiments, a subset of the ISCAS benchmarks were 

used. We have run the library mapping method of ABC using 

three different libraries for each circuit. The library mapping is 

performed through the command map. The algorithm [11] which 

implements the mapping is based on a simplified cut-based 

Boolean matching, lossless synthesis and supergates. The 

command map with the –a flag (indicating area oriented mapping 

only) were run ten times for each circuit (it is an iterative 

incremental process). Each mapped circuits was written into a 

Netblif file. Through this, we could identify the relative costs of 

each circuit. The cost of a circuit is the sum of the costs of all 

majority gates and inverters contained in the circuit. Based on the 

relation proposed in [3], the costs three and five were assigned to 

majority gates and inverters, respectively. These costs are 

proportional to the size of the single quantum cell. It means that 

the majority gate (inverter) is three (five) times bigger than a 

single quantum cell. 

Table 1 shows a comparison between the ABC mapping and the 

numbers of the Kong's synthesis [5]. The "Basic" column 

corresponds to a simple library that is composed by a majority 



gate, an inverter, an AND2 (due to restrictions on ABC - this cell  

can be implemented through a Majority gate) and the constants 

ZERO and ONE. The third column corresponds to an expanded 

library which contains the thirteen functions defined in [2]. The 

fourth column has forty primitive functions which can be 

implemented by a single majority gate. The library proposed in 

[5] contains only three functions included in the library of [2]. 

This library is the same library used in the experiments performed 

in [5]. The last column corresponds to results presented by Kong 

[5]. The circuits mapped with the basic library presents highest 

costs. This is expected since it is a very simple library. In most 

cases the larger libraries tended to have the better results. 

However, it does not happen in all cases when comparing circuits 

mapped with the libraries proposed by [2] and [5]. The library 

proposed in [2] has more complex cells then the cells presented in 

[5]. 

Table 1 - Comparison between ABC mapping ans Kong's 

method. 

Circuit 
ABC 

Kong's method [4] 
Basic [1] [4] 

9symml 1306 844 630 256 

alu2 2288 1496 1305 1555 

apex6 4230 3426 2168 2776 

cht 1054 464 474 405 

cm150a 318 163 163 238 

cm151a 201 101 91 119 

cm152a 168 68 78 98 

cm162a 214 161 159 193 

cm163a 206 153 156 199 

cm42a 121 121 71 84 

cm82a 127 24 77 51 

cm85a 214 177 144 78 

cmb 216 184 158 104 

cu 247 182 187 225 

decod 110 110 110 114 

frg1 691 500 386 620 

i2 1730 1656 641 627 

k2 5062 4720 3458 4998 

ldd 386 341 234 321 

majority 48 33 18 18 

mux 308 208 158 198 

pcle 384 289 189 271 

pcler8 469 364 234 315 

pm1 204 170 160 185 

term1 842 509 575 568 

ttt2 938 573 571 695 

unreg 871 426 386 417 

vda 2316 2244 1574 2810 

x2 243 201 153 186 

z4ml 229 36 154 57 

Even though the library in [2] has a smaller number of functions, 

it can achieve better results depending on the circuit structure. In 

most of the cases, the Kong's library [5] presents better results. 

When compared to the Kong's method, the ABC method is worse 

in few cases. It shows that even compared to the state of the art 

tool, the Kong's method has some tricks that leads to better 

results. As conclusion, we can say that the ABC method is not 

good enough, and it can be improved and optimized to achieve 

better solutions. 

Fig. 2 presents a graphic that summarizes the results of Table 1. It 

shows the sums of the costs of all circuits for a given library. It is 

clear that the ABC mapping is more efficient for the whole set of 

circuit.  

 

Figure 2 – Table 1 graphic summarization. 

4. GENERIC MAPPING FLOW 

The experimental results show us that the regular technology 

mapping could be improved to achieve better results on QCA 

technology. In fact, it could be something that can be done to any 

other technology. Until now, the methodology proposed in ABC 

is based on a bunch of logic synthesis concepts and algorithms 

that leads to good practical results either on FPGA or standard 

cell (mainly CMOS) synthesis. Kong [5] has used the same 

algorithms applied in a different methodology, and it has been 

shown that his proposition can achieve good results in some 

cases. 

At the end, the difference between ABC mapping and the Kong’s 

method is the order and the way that they apply a bunch of logic 

synthesis algorithms on their methods. Therefore, it would be nice 

to have an environment where we could specify a mapping 

methodology in a high abstraction level. It would allow us to 

quickly prototype different mapping methods and eventually 

apply it on different technologies. 

The ABC tool is an open source academic software that allows the 

development of new methods using C/C++ programming 

language. Although it has a pretty good documentation, further 

developments on this environment are not going to result in a 

quickly prototyping. Thus we intent to present a generic mapping 

flow that should provide an environment to quickly prototype new 

mapping methodologies. Moreover, it should give some didactic 

support for educational purposes. 

In an early stage of development, we do have a baseline flow that 

is been validated. Currently, it is able to read AIGER [7], BLIF 

(Berkeley Logic Interchange Format) and EQN (Equation format) 

files. These descriptions are represented through a unified AIG 

based data structure. Using this structure, we are able to perform 

either DAG or tree mapping. The matching phase relies on k-cut 

enumeration [13] and the Boolean matching algorithm presented 

in [10]. The covering procedure is based on [9][12]. 

The next step is the definition of a software engineering model 

that will be the basis of our generic technology mapping flow. The 

word “generic” means that we would like to specify a technology 



mapping method in a high abstraction level and ease the 

integration processes of other algorithms. This way, we could 

create new methodologies combining different algorithms for 

matching and covering. In addition, we could also specify 

different objective functions for a given methodology. All these 

features would allow us to quickly prototype new technology 

mapping methods. 

5. CONCLUSIONS AND FUTURE WORK  

This paper presents a comparison between the ABC logic 

synthesis tool [6] and the state of art on QCA synthesis [5]. It is 

clear that there is a gap between their technology mapping 

methods. Using the QCA library presented in [5], the ABC 

mapping has presented better results in most of cases. However, 

the Kong’s method [5] presents pretty good results in other cases. 

Therefore, the regular technology mapping could be improved to 

achieve better results on QCA technology. Besides the mapping 

method itself, the QCA library could be improved by increasing 

the number of available Boolean functions. This would lead to 

area reduction. 

The lack of a quickly prototyping environment for technology 

mapping has motivated us to start the development of a generic 

technology mapping flow. This flow should allow the 

specification of a technology mapping method in a high 

abstraction level and ease the integration processes of other logic 

synthesis algorithms. It would allow us to quickly prototype 

different mapping methods and eventually apply it on different 

technologies. As future works, we intend to extend the mapping 

experiments by using augmented libraries. Furthermore, by 

experimenting different mapping procedures, we could be able to 

propose a new algorithm for the QCA technology. 
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