
Microprocessors Datapath Design: Evaluating Complexity,
Performance and Area

Thiago R. B. da Silva Soares
Universidade Federal do Piauí
Departamento de Informática e

Estatística
thiagorbss@gmail.com

 Laysson Oliveira Luz
Universidade Federal do Piauí
Departamento de Informática e

Estatística
layssonoliveir4@gmail.com

Ramon Santos Nepomuceno
Universidade Federal do Piauí
Departamento de Informática e

Estatística
ramonn76@gmail.com

ABSTRACT
Despite the wide availability of silicon area, the design of
processing cores for multi-core architectures must search for
efficiency regarding area, power and performance. For more
reasons, a processing cores developed focusing FPGAs
implementation must to search such efficiency. This paper
presents a case study that aims to analyze the impact of using or
not FPGA’s embedded multiplier based on multi-core design in
FPGA. For this work, VHDL descriptions of two processing cores
were developed and analyzed with respect to area and
performance. For the performance analysis, a highly
multiplication-dependent application was chosen and executed in
both processing cores. The paper shows that without FPGA’s
embedded multiplier it is possible to reach a reduction in area of
23% and increase the frequency in 37%, of course that with a
penalty in performance.

Categories and Subject Descriptors
B.2.2 [Performance Analysis and Design Aids]: Simulation –
Verification, Worst-case analysis.

General Terms
Measurement, Performance, Verification.

Keywords
Performace, Multiplication, FPGA, Embedded System.

1. INTRODUCTION
In the design of hardware cores for embedded system, factors such
as frequency, power and silicon area are very important. In
embedded systems design the higher frequency or the smallest
silicon area not necessarily the best choices, the final system cost
and power consumption are important factors that significantly
impact the decision.

When FPGA is used as the target implementation technology for
embedded system the area is measured in terms of FPGA’s
reconfigurable units usage. Essentially FPGAs consists of an array
reconfigurable of basic reconfigurable units, used in the
implementation of combinational and sequential logic and specific
reconfigurable units, for implementation of multipliers, dividers
and others functions. FPGA includes also reconfigurable I/O ports
and interconnects. The cost of a single FPGA device is measured
by factors including the amount and complexity of these
reconfigurable units, and other factors not related with the study
presented in this paper, such as manufacturing technology,
packaging, and so on.

The use of FPGAs to implement an embedded system that
requires multiple computational units implies the necessary
analysis of the FPGA resource usage for each of these cores. In
this case, depending on the complexity of the project, it makes
sense to talk about chip-area budget, because the amount of
FPGA reconfigurable units is limited and cannot be modified
without modifying the FPGA device, family or FPGA provider.
Probably any of these options results in increased cost.

This paper makes a comparative study focusing on the FPGA
resources usage to implement a processing core and the
performance reached, considering the maximum frequency and
the number of cycles to perform a computational task, when
FPGA’s embedded multiplier are used or not.

The paper is organized into four sections. The second describes
the processing cores used in the study. Section three presents the
experiments and discusses about the results. Section four presents
the conclusions and discusses about future work.

2. PROCESSING CORES
For the study presented in this paper two cores were developed
and described in VHDL. Each of these cores was described in two
versions. The first one uses FPGA’s embedded multiplier and the
second not.

The first processing core was developed for educational purposes
and has a VHDL description based on the proposal presented in
[1]. The second processing core has a RISC architecture (Reduced
Instruction Set Computer) and was originally proposed by [2].
These two processing cores have very different characteristics and
this is why they were chosen for this study.

The utilization of different processing cores make possible to
analyze how the use or not of FPGA's embedded multipliers
influence on the design and performance of a multicycle
processing core and a pipelined one. In the next section it is
possible to see that the results tables were provided to each
processing core individually so that the conclusion should be
made considering the differences between the two architectures.

2.1 uDIP
uDIP (UFPI’s Didactic Processor) was develop with educational
purpose and it have specific resources (hardware and instructions)
to be used as processing core in a multi-core architecture. It is a
16-bit Harvard architecture with 32 general-purpose 16-bit
registers. Its instruction set includes thirty-five instructions.

The uDIP is a multicycle processor and executes most of its
instructions in three cycles, except for the memory access

alex
Text Box
SForum 2012 - Student Forum on Microelectronics
This work has been developed by the first author(s) in the scope of the undergraduate studies

instructions and the conditional jump instructions (when the
condition is satisfied) that are executed in four cycles.

It is a RISC processor capable of addressing up to 16 bits and
have two instruction formats, shown in Table 1 and Table 2.

Table 1. Format with immediate value.

15-10 9-0

Opcode Immediate

Table 2. Format with two registers.

15-10 9-5 4-0

Opcode Reg1 Reg2

The immediate field can be used as memory address or as operand
in logic-arithmetic instructions. The fields reg1 and reg2
addressing one of the 32 registers available in the register file.
These registers are used in arithmetic-logic instructions and also
for memory access instructions.

To implement the shift instructions, necessary in this study, was
used the lpm_clshift Megafunction, a configurable combinational
logic shifter provided by Altera.

2.2 Risco
RISCO is a 32-bit processing core with 32 general-purpose
registers and three pipeline stages [2]. The instruction set is coded
in five formats, and originally did not include instructions for
multiplication and division.

A word (instruction) has two bits (T0 and T1) to determine the
type of instruction (logical-arithmetic, memory access, jump or
subroutine), five bits (C0 to C4) to indicate the operation code
(determines which operation will be performed), one bit (APS) to
determine the update of the status register, three bits (F1, F2 and
SS2) to determine the operands of the instruction, and the
following less significant bits to indicate the operands. Figure 1
shows the instruction formats.

There are three different ways to use the immediate: Kpe, an 11-
bits immediate, which is made an extension of the most significant
bit, Kgl, with 16 bits, in which the extension is made in the same
way as before, and Kgh, in which the lower 16 bits become more
significant and the less significant 16 bits are filled with 0.

The uses of the immediate field are in Table 3.

Table 3. Using the immediate field.

F1 F2 SS2 Operation (DST <= A op B)

0 0 0 DST <= FT1 op FT2

0 0 1 DST <= FT1 op Kpe

0 1 X DST <= R0 op Kgl

1 0 X DST <= DST op Kgh

1 1 X DST <= DST op Kgl

For this study three new instructions were added to the ISA: mult,
div e jpar. The instruction mult performs integer multiplication,
the div perform integer divisions and the jpar is a conditional
jump based on the least significant bit (jump if zero). To the
RISCO’s instruction set it was also included inter-processors
communication instructions. The inter-processor communication
instructions are I/O-like instruction and allow that processors send
or receive data through inter-processors communication ports.

3. EXPERIMENTS AND RESULTS
Both cores were implemented in VHDL and synthesized with
Quartus II software for Cyclone III - EP3C16F484C6 device. To
realize the necessary execution tests, a multiplication of two 8x8
matrices was developed and performed on the processors.
Obviously this application proposes a worst case study because it
uses intensively multiplication operations.

For the tests in which the processing cores had no hardware
multipliers, an algorithm was developed using logical shifts and
additions to perform the multiplication. The algorithm uses four
general-purpose registers: Rx and Ry to be multiplied, Ra, used to
control the amount of shifting operations and Rb, which is
initialized with zero and get the final result.

The multiplication of Rx and Ry is performed as follows: if the
least significant bit of Rx is 1 then Rb = Rb + Ry, after Rx is
shifted one bit to the right and Ry is shifted one bit to the left.
Otherwise (the least significant bit of Rx is 0), only the shift is
performed. This procedure is repeated until all bits from Rx are
analyzed.

The multiplications were made with 16 shifts in both processors
and the values used in the matrices do not generate results higher
than 255. Thus the matrix multiplication performed on both
processing cores are comparable.

To get the desired results for the comparisons, the data collection
was done in four steps:

Step 1: Synthesis of uDIP with hardware multipliers and
execution of the matrix multiplication using the mult
instruction. Synthesis and performance results are
show in Table 4.

Step 2: Synthesis of uDIP without hardware multipliers and
execution of the matrix multiplication using the shift-
add algorithm. Synthesis and performance results are
show in Table 5.

Step 3: Synthesis of RISCO with hardware multipliers and
execution of the matrix multiplication using the mult
instruction. Synthesis and performance results are
show in Table 6.

Step 4: Synthesis of RISCO without hardware multipliers and
execution of matrix multiplication using the shift-add
algorithm. Synthesis and performance results are show
in Table 7.

3.1 Results
The results of Tab. 4 and 5 shows a small reduction in the amount
of logic elements used when the hardware multipliers was not
used. The second column of Tab. 5 shows that FPGA’s 9-bit
Multiplier was not used. This means a reduction in the use of
FPGA resources, which can result in reduced energy

Figure 1. Instruction formats.

consumption. Without the hardware multipliers the maximum
frequency increased approximately in 36%.

Despite the advantages obtained by reducing the use of FPGA
resources and increasing the frequency, the number of cycles
required for the execution of the matrix multiplication increased
considerably. The percentage increase is approximately 736%.
This increase is due to the multiplication algorithm used.

In Tab. 6 and 7, related to RISCO, the amount of logic elements
decreased considerably and the 9-bit multiplier also was not used.
However, the increase of frequency was not high as uDIP’s and
the number of cycles required for the execution of the matrix
multiplication, in RISCO, has also increased. The percentage
increase is, approximately, 629 %.

Table 4. uDIP with the multipliers.

Total logic
elements

9-bit
Multiplier

Clock’s max
frequency Cycles

1.429 / 15.408
(9%)

4 / 112
(4%)

91.76 MHz 41081

Table 5. uDIP without the multipliers.

Total logic
elements

9-bit
Multiplier

Clock’s max
frequency Cycles

1.382 / 15.408
(9%)

0 / 112
(0%)

126.01 MHz 343417

Table 6. Risco with the multipliers.

Total logic
elements

9-bit
Multiplier

Clock’s max
frequency Cycles

5.367 / 15.408
(35%)

6 / 112
(5%)

77.81 MHz 48988

Table 7. Risco without the multipliers.

Total logic
elements

9-bit
Multiplier

Clock’s max
frequency Cycles

4.124 / 15.408
(27%)

0 / 112
(0%)

83.31 MHz 356959

4. CONCLUSION AND FUTURE WORKS
This study demonstrated the advantages and disadvantages of
using or not FPGA’s embedded multiplier in the design of
processing cores based in FPGA.

In the multicycle architecture, uDIP, the increase in frequency was
quite satisfactory, despite the low reduction of logic elements and
the number of cycles have increased greatly. In the pipelined
architecture, RISCO, the increase in frequency was low, the
number of cycles also increased greatly, but the number of logic
elements decreased considerably.

4.1 Future works
As future work it is necessary to analyze the processing core’s
performance for more application (real applications). These
application needs to have different profiles considering the
amount of multiplication required to the execution. Also, it is
necessary to analyze the energy consumption. Finally the
processing cores will be integrated into a multi-core architecture
and more execution tests must be executed.

5. REFERENCES
[1] Hamblen, J. O., Hall, T. S. and Furman, M. D, 2005, Rapid

Prototyping of Digital Systems, Ed Springer.

[2] Junqueira, A. A. 1993, RISCO – 32-bit Microprocessor
RISC CMOS, Master’s Degree Thesis, Institute of
Informatics, Federal University of Rio Grande do Sul, Porto
Alegre, RS.

