
MARISCO: A Multi-Core Platform
Laysson Oliveira Luz

Universidade Federal do Piauí
Departamento de Informática e

Estatística

layssonoliveir4@gmail.com

Ivan Saraiva Silva
Universidade Federal do Piauí

Departamento de Informática e

Estatística

ivan@ufpi.edu.br

Thiago R. B. da Silva Soares
Universidade Federal do Piauí
Departamento de Informática e

Estatística

thiagorbss@gmail.com

ABSTRACT

Multi-core architecture is the natural result of industrial

capability development. For decades enhancements in the

performance of microprocessors were based on the reduction the

transistors size and increasing the clock frequency. These

technological evolutions enabled the integration of more and

more transistors on a single chip as well as performance

improvement without architectural modification. However, the

industrial capability to continuously increase the clock frequency

has reached its limits. In recent years with the inability to

increase over again the clock frequency and the continuous

increase in the integration capacity the industry was conducted to

engage in the race for developing processors with multiple

processing cores. This paper presents the design and

implementation of a multi-core embedded processor platform

through the integration of general-purpose processors using a

crossbar as interconnection subsystems. All the hardware devices

used in the multi-core embedded processor were described in

VHDL language aiming an FPGA implementation.

Categories and Subject Descriptors

C.1.2 [Processor Architecture]: Multiple Data Stream

Architectures (Multiprocessors) - Array and vector processors,

Associative processors, Connection machines, Interconnection

architectures, Multiple-instruction-stream, multiple-data-stream

processors (MIMD), Parallel processors, Pipeline processors.

General Terms

Language, Microprocessors, Reconfigurable Architecture,

Instructions.

Keywords

VHDL, RISCO, Microprocessors, Reconfigurable, Architecture.

1. INTRODUCTION
In the past decade was observed that the consumer electronic

industry has been engaged in a race to increase the integration

capability and the frequency of circuits. This race has emerged to

meet the growing demand for consumer electronic devices:

mobile phones, personal computers, among other high-tech

gadgets. As a consequence devices were developed with

enhanced functionality and design complexity. High level of

integration, small size and low power consumption became the

industry's technological goals. Furthermore significant impact as

observed in the work designer's team, the time available for

conclude a project reduces considerably [1].

The platform concept emerged with the need to develop new

methods aiming to solve the problem of reduced time to market

and the gap of technology. The technology gap is the difference

between the productivity of development teams and integration

capacity of the semiconductor industry.

The platform-based design methodology applies directly to the

development of multiprocessor systems on chip (MP-SoCs). Such

systems consist of an integrated set of cores with different

processing capacity (general-purpose processors, dedicated cores,

DSPs - Digital Signal Processors, memory, interconnection sub-

system, among others). Multi-cores are more restrictive examples

of MP-SoCs. It consists generally in the integration of processing

cores, memory and interconnection sub-system.

A platform is frequently defined as an abstraction that hides or

simplifies the design details of a system. A MP-SoC platform

consist in a library cores, specified at some abstraction level, and

delivered with rules of integration and information about

performance functionalities.

This paper presents the design of a multi-core embedded

processor platform. The design uses the RISCO [2] processor, a

crossbar as interconnection subsystems and distributed

memories. The paper is organized as follows: Section two

presents the multi-core embedded platform; section three

presents a discussion about integration and validation

experiments and section four presents future works.

2. MULTI-CORE WORKS
Multi-core architectures have become mainstream in embedded

systems design. Currently it is easy to find several papers in

major journals and conferences on topics related to multi-core

architectures. Many of them focus on topics related to software

development: programming, operating systems, virtualization,

and so one. Many other address topics related to hardware

development, mainly interconnecting sub-systems, low power

architectures, and memory hierarchy, among other topics.

This section will not present a comparative study between the

architecture proposed in this paper and others presented in the

literature, that is present architecture as the platform ARM

cortex A9 (designed for mobile computation of geral purpose that

can be custom before produced)[3] and the architecture Intel

Core i7 (also of geral purpose, that use the concept of symmetric

multithreading)[4]. The main reason is that it is a work with

educational purpose that aims at a first moment to design a

platform that after will be used to develop new hardware and

software resources to multi-core processors.

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

3. THE MULTICORE PLATFORM

3.1 Risco Processor
RISCO is a RISC processor architecture 32-bit, developed for

CMOS technology. Its data, instructions and addresses are 32-bit

words. Its address unit is the word, not being addressed byte or

half word. You can access, so about 4 Giga words (17 Gbytes).

Communication with the memory is made by only one bus, called

the BSIS , multiplexing data and addresses through it and doing

a search for instructions and memory access operations. There

are 32 registers of 32 bits (R0 to R31), R0 being reserved for the

constant 0, R1 reserved for status word and R31 set the program

counter (PC).

RISC has a pipeline of three stages, reaching the peak of one

instruction by machine cycle. Each machine cycle consists of

three different phases.[2]

3.2 The Crossbar Architecture
The crossbar is a quite simple NoC (Network on Chip), this is, a

designing the communication subsystem between IP cores in a

System-on-a-Chip (SoC). The crossbar is written in VHDL,

which has gates for five cores, for transmitting both data and

control signals.

The architecture does not have the cache or RAM, is described

only with registers and signals, which ensures agility in

processing such signals and data recovery also implies a low

power, highly functional feature when dealing with processors

because this integrated circuit should suit the needs of the five

centers in real time, so any failure that may result in deadlocks,

which is not acceptable.

In crossbar there is only crossing bit sequences the same maps all

core in order to coordinate all of the cores transfer between them.

The architecture maintains a register for each core and each of

these with reference to the other core, so it is possible to address

any data from one processor to any other, all in the shortest time

possible.

3.3 MARISCO
By the universality of the crossbar architecture we envision a

multi-core processors pipeline in order to evaluate the gain

agility to execute tasks previously performed using multicycle

core.

The platform developed in hardware description language

(VHDL) is a homogeneous architecture as it is constituted by

instances of the same microprocessor and logic has a simple and

very functional, with the basic principle of communication core

integrated to it.

Described in low-level language, the platform called MARISCO

is basically a network of gates and wires that communicate

among themselves RISC five processors, allowing create clusters

of microprocessors.

The establishment of multi-core platform occur in first moment

with a testing of each core in particular, after were tested two

cores communicating among themselves, after this test having is

approved, the others cores were integrated to platform crossbar,

since the performance of the architecture consist to multicycle

processor, the implementation MARISCO aims to evaluate the

performance gain with pipeline RISC processors.

The microprocessor RISCO was modified so that the processing

power of architecture to be tested for the experiments were

inserted two instructions, data synchronization, processor, with

which the cores were able to send and receive data between each

other, this is, to RISCO was added to the two instructions of

input and data output (execute_in and execute_out).

The integration of the five processors multi-core platform will

occur by means of some control ports and data. In detail, each

core has four input vectors to receive data from each of the other

cores, and the control signals from the crossbar for writing and

reading, and two registers are used respectively to send data and

determine which core send the data, with these signals the

crossbar sends sequences of bytes to their respective

destinations.

Figure 2. Schematic of multicore platform of processors RISCO (

MaRISCO)

The whole architecture operating synchronously with the core

causes instructions as the synchronization data to force cores

involved in these instructions to "stop", this is, assuming two

core , A and B, when the core A needs of a data core B, A must

wait until the data has been read from the core A and written on

your register corresponding to this core. This "stop" the flow of

execution of the processor is required to prevent data recovery

"garbage", this is, the core prevents receive undue data.

The MARISCO has the peculiarity of being a pipeline processor,

which makes benchmarks programming for the same, this is,

work for the programmer is complicated by the peculiarities of

Figure 1.Image of microprocessor RISCO

the ISA (Instruction Set Architecture), due to having to avoid

data conflicts, for example, request a register at the time that it is

being updated or writing.

Therefore, the development of benchmarks for MARISCO is the

need for attention to conflict does not occur, conflicts as loss of

data on transmission between cores or even deadlocks that

eventually would occur by any delay of a core in send data or for

even not send the data.

4. MaRISCO’s Especification
Having mounted the MARISCO, that is, completed the

unification of the five instances RISCO and the crossbar

architecture, the results of the compilation the MARISCO reveal

some important features such as clock frequency and size (logic

elements) of the architecture

Next to the compilation of the architecture, simulations were

performed to verify the operation of the platform, evaluating it

for safety and reliability, that is, verifying the integrity of the

data after sending (out) and receiving (in) for each one of the

cores.

The simulation is programmed as follows: each core has its

program in memory, this program determines the initialization of

registers, performs a simple arithmetic operation and then sends

the resulting data to another core, and if this core need an

external data, the program performs the operation in to receive

this data.

The benchmark for validation of the architecture starts at the

Local core, which initializes two registers and sends one to the

North core and the other to the South, the North receives the data

from the Local, save it in the register, use it as operating on an

addition and sends the result to the East core. This receives the

data from the North, stored in the register file, uses it in a

division and sends the result to the Local core.

The South core receives the data delivered by the Local, uses it

in a sum and sends the result to the West core, it receives it,

store it in a register, use it in a multiplication and sends the

result to the Local core.

Finally, the Local core, is waiting for data from the East and

West cores, when they arrive, the Local receives, recording in

register, then saves them in memory.

The simulations allowed to evaluate the performance of the

architecture, despite the simplicity of the benchmark, all data

transferred do not changed, and there was no loss of data, thus

expressing the reliability of the architecture and the data transfer.

Described in VHDL, using the software of the Altera® Quartus II

v9.1 Web Edition, the platform was synthesized on FPGA

Ciclone III EP3C55F484C6, that has 55.856 logical elements

available, these the architecture uses 26.544 combinational

functions and 6.305 dedicated registers, so, the architecture

occupies 48% of capacity of FPGA.

Each processor in specific has a frequency of 45,91 MHz, the

platform, formed of five RISCO's unity that crossbar , has a

frequency of 81,07 MHz, that features a execution very fast of

multicycle instructions in pipeline.

5. FUTURE WORKS
The idea of increasing the processing capacity with more than

two cores by chip is no longer sufficient to meet the needs of

users. As increasingly decreased the size of transistors that would

fit more transistors by chip, the tendency now is increasing the

number of cores.

The multi-core platform of RISCO still being improved, so that

have a greater storage capacity for both data as instructions, this

is, for example the implementation of Harvard model, which has

separate memories for different purposes.

Besides the constant need for greater storage capacity, is very

importance that the memory gain does not imply in loss of speed

or large increase in power consumption, therefore the platform is

being worked in order to provide units of memory access, called

DMA (Direct Memory access), to speed access to the memory.

The properties will MARISCO not limited physical layer of the

architecture, the goal is virtualization and reprogramming, this

is, and respectively the capacity of cores simulate other

processors and capacity to reprogram the same at runtime.

In addition to developing the hardware level, there is a universal

need for the compiler, that is, the development of the compiler

RISCO not only to one processor, but for the five cores in order

to program it already multi-core in order to support to

reprogramming.

6. REFERENCES
[1] Bass, M. J.; Christensen, C. M.; The Futureof the

Microprocessor Business. IEEE Spectrun. Abril 2002.

[2] Junqueira, A. A.; RISCO-Microprocessador RISC CMOS de

32 bits. Dissertação de Mestrado. Porto Alegre, RS.

Setembro,

[3] “The arm cortex-a9 processors,” tech.rep.,ARM Ltd.,

September 2007. Disponível em 11/06/2010

http://www.arm.com/pdfs/ARMCortexa-9Processors.pdf.

[4] Chiachia, Giovani; Arquiteturas Multicore*. Campinas, SP.

Disponível em

http://www.ic.unicamp.br/~ducatte/mo401/1s2010/T2/0983

62-t2.pdf

http://www.arm.com/pdfs/ARMCortexa-9Processors.pdf
http://www.ic.unicamp.br/~ducatte/mo401/1s2010/T2/098362-t2.pdf
http://www.ic.unicamp.br/~ducatte/mo401/1s2010/T2/098362-t2.pdf

