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ABSTRACT 
This work is devoted to the study of a network on chip [3] 
model: IPNoSys (Integrated On-chip Network Processing 
System), having as main objective to obtain an optimal 
configuration of the network, comparing performance and 
power consumption. In this work, the platform IPNoSys shall 
be subject to execution of a set of synchronous dataflow 
generic applications. The term “generic” means that they have 

no real application, being in fact a set of arithmetic 
instructions. This approach will ensure a greater test coverage. 
The aim is to obtain results which provide an ideal setting for 
IPNoSys network components, regarding to the processing of 
applications which give us a known and constant data stream. 
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1. INTRODUCTION 
As computer architectures evolve and software complexity 
increases, architectural models come out from a Central 
Processing Unit to the systems called Multi-core. IPNoSys 

was created by [2] which describes a network on chip capable 
of performing processing as routes. The allocation of multiple 
processing units influence the parallel execution, and the 
various physical interconnections between these components 
ensure the existence of alternative routes. 
IPNoSys’ model of execution, described by [3], motivates the 
study of this network through the implementation of 
applications that have a constant known data flow. This paper 
begins with an introduction to the synchronous data flow 

model, followed by WORKFLOW section, where we present 
the test environment we used. RESULTS section presents 
graphics obtained by running applications on the network. In 
section DISCUSSION OF RESULTS the results are 
interpreted and discussed. Finally, the CONCLUSION section 
presents the conclusions from the studies. 

 

2. BACKGROUND 
The dataflow model of computation is not new. It exists since 
the 70s and is characterized by being data-driven. A program 

dataflow can be represented by a directed graph, whose nodes 
correspond to the instructions, and the edges, the flow of data. 
Therefore, an instruction is executed only when all its 
incoming edges have tokens (released by other nodes), 
meaning that the data necessary for their implementation are 
now available [5]. Figure 1 illustrates a data flow graph, 
where lower nodes process as soon as the top node instruction 
in this statement has been executed. 

 
Figure 1 - Data Flow Graph. 

 

IPNoSys has a computational model similar to the dataflow. 
Its programs are divided into smaller units, called packages, 
which encapsulate data and instructions. Packages travel over 

the network topology that is a 2D grid 4x4 (16 nodes). Each 
node corresponds to a routing and processing unit (RPU) 
capable of processing packages and forwarding packages to 
the next RPUs. Memory access is made via four memory 
access units (MAU) that are distributed in the four corners of 
the network, and are also responsible for injecting packages 
into the system. The IOMAU component is responsible for 
performing the function of an ordinary MAU, and performs 

input and output operations (I/O). 

 

3. WORKFLOW 
In order to obtain desired results, it was essential to create a 
tool able to generate a variety of dataflow programs to be 
executed on the IPNoSys platform. This simple tool is based 
on the purpose of generating synchronous dataflow programs 
from entries such as the amount of packages and the number 
of instructions per pack. As shown in Figure 3 we used the 
generator, the pre-existing network assembler and the 

simulator, each one receiving inputs and generating outputs. 
Finally, it is generated the log file containing the simulation 
results. 

 
Figure 3 - Workflow for obtaining the results 

 

4. RESULTS 
The execution of an application in the simulation environment 
IPNoSys network generates a log file where it can be seen the 
number of cycles and the total energy spent to process the 
entire program. From these logs, graphics were plotted to 
obtain a better view of the samples to different test cases. 

 
Figure 4 – Graphic Instructions x Cycles, 1 package. 

 
The experiment conducted to obtain the graphic in Figure 4 
consists of injecting only one package in the network varying 

the amount of instructions per packages and instructions per 
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RPU. The graphic shows the number of cycles spent by the 
network for each configuration. 

 

 
Figure 5 – Graphic Instructions x Cycles, 4 packages. 

 

The experiment conducted to obtain the graphic in Figure 5 is 
the injection of 4 simultaneous packages in the network, 
varying the amount of instructions per packages and 
instructions per RPU. The graphic shows the number of cycles 
spent by the network for each configuration. 

 

 
Figure 6 – Graphic Instructions x Power, 1 package. 

 
The experiment conducted to obtain the graphic in Figure 6, 

consists of injecting only one packet in the network by 
varying the amount of instructions per packages and 
instructions per RPU. The graphic shows the energy spent by 
the network for each configuration. 

 

Figure 7 – Graphic Instructions x Power, 4 packages. 
 

The experiment conducted to obtain the graphic in Figure 7 

consists of injecting simultaneously 4 packages in the 
network, varying the amount of instructions per packages and 
instructions per RPU. The graphic shows the energy spent by 
the network for each configuration. 

 

        
Figure 8 - Linear regression of cycles, 1 package  and 128 instructions per RPU. 

X axis: instructions. Y axis: cycles.  

 
Figure 8 represents the line obtained by the numerical method 
of linear regression for an average case of testing for the 
amount of cycles spent by the network, where each RPU was 
programmed to perform up to 128 instructions in each 
package, considering that only one package was injected into 

the network and varying the amount of instructions per 
package. 

 

 
Figure 9 - Linear regression of cycles, 4 packages and 128 instructions per RPU. 

X axis: instructions. Y axis: cycles.  

 
Figure 9 represents the line obtained by the numerical method 

of linear regression for an average case of testing for the 
amount of cycles spent by the network, where each RPU was 
programmed to perform up to 128 instructions in each 
package, considering the injection of 4 packages in the 
network and varying the amount of instructions per package.  

 



 
Figure 10 – Linear regression of power consumption, 1 package and 128 

instructions per RPU. X axis: instructions. Y axis: mW. 

 
Figure 10 represents the line obtained by the numerical 
method of linear regression for an average case of tests for the 
energy spent by the network, where each RPU was 

programmed to perform up to 128 instructions in each 
package, considering the injection of 4 packages in the 
network and varying the amount of instructions per package. 

 

 
Figure 11 - Linear regression of power consumption, 4 packages and 128 

instructions per RPU. X axis: instructions. Y axis: mW. 

 
Figure 11 represents the line obtained by the numerical 
method of linear regression for an average case of tests for to 
the energy spent by the network, where each RPU was 
programmed to perform up to 128 instructions in each 
package, considering the injection of 4 packets in the network 

and varying the amount of instructions per package. 

 

5. DISCUSSION OF RESULTS 

5.1 PERFORMANCE 
Interpretation of the results of performance tests (in cycles) 
shows that for each configuration (assuming that in this case, 
the term configuration refers to the number of instructions 

executed for each RPU and the amount of instruction per 
package), as the number of packages in the network increases, 
the number of cycles necessary for executing the program 
remained almost constant, having an average increase of 
2.5%  for each package added. 
The nearly linear behavior is due to the fact that all packages 
injected into the network present instruction independence. A 
package doesn’t the need to wait for the other’s processing, 
ensuring a fully parallel implementation. Part of the cycles 

spent to process the application can be justified by the 
implementation of verification algorithms and treatment of 
deadlocks. 
From the regression was observed that the time spent in cycles 
to process different programs with an equal number of 
packages, varying only the instructions in each package, 
presents a linear behavior, being easily estimable by the 
function described in the figures 7 and 8. 

 

5.2 POWER CONSUMPTION 
From the graphics, it is concluded that by increasing the 
number of packages in the network, the energy consumed 

does not increase linearly with the instruction package, with a 
behavior describable by a polynomial function. It was also 
observed that the amount of energy required to process a 
program showed a linear increase for the same configuration. 
Furthermore, according to Figures 6 and 7, the power 

expended decreases as the amount of instructions per RPU 
increases. By increasing the number of instructions per RPU, 
there is less communication between nodes, consequently, less 
switching RPU ports and a lower buffer allocation for the 
transfer of packages. When the number of instructions per 
RPU is greater than or equal to the number of instructions per 
package, data processing always happens on one single node, 
causing under-utilization of network resources. 

 

6. CONCLUSION 
In this paper we evaluate the IPNoSys platform by 
implementing a set of generic synchronous dataflow 
applications, presenting the results in graphics, where it was 

possible to observe extreme and medium cases of execution. 
From the interpretation of results, we extracted an optimal 
configuration for the IPNoSys the synchronous data flow 
applications scenario. 
IPNoSys by its computational model proved to be an ideal 
architecture for synchronous dataflow applications. An 
optimal configuration for the network will depend on its use 
for a particular purpose. For large data processing it is ideal to 

use it with their RPUs programmed to perform a large number 
of instructions, because the closer this number is the amount 
of instructions in the package, the higher the performance 
(less cycle spending), and lower energy cost energy, by not 
occurring a high transmission of packages among RPUs. 
However, this practice under-utilize network resources, while 
maintain a higher traffic through only four corner nodes. 
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