
Evaluation of data flow experiments in the IPNoSys

NoC
Jefferson Lemos1, Jonathan Mesquita1, Márcio Kreutz1, Sílvio Fernandes2, Edgard Correa1

brunoluno10@gmail.com, jonathan.wanderley@gmail.com, kreutz@dimap.ufrn.br, silvio@ufersa.edu.br,

edgard@dimap.ufrn.br

ABSTRACT
This work is devoted to the study of a network on chip [3]
model: IPNoSys (Integrated On-chip Network Processing
System), having as main objective to obtain an optimal
configuration of the network, comparing performance and
power consumption. In this work, the platform IPNoSys shall
be subject to execution of a set of synchronous dataflow
generic applications. The term “generic” means that they have

no real application, being in fact a set of arithmetic
instructions. This approach will ensure a greater test coverage.
The aim is to obtain results which provide an ideal setting for
IPNoSys network components, regarding to the processing of
applications which give us a known and constant data stream.

Keywords: power consumption, performance, noc, ipnosys,
data flow, synchronous data flow, evaluation, soc, network

1. INTRODUCTION
As computer architectures evolve and software complexity
increases, architectural models come out from a Central
Processing Unit to the systems called Multi-core. IPNoSys

was created by [2] which describes a network on chip capable
of performing processing as routes. The allocation of multiple
processing units influence the parallel execution, and the
various physical interconnections between these components
ensure the existence of alternative routes.
IPNoSys’ model of execution, described by [3], motivates the
study of this network through the implementation of
applications that have a constant known data flow. This paper
begins with an introduction to the synchronous data flow

model, followed by WORKFLOW section, where we present
the test environment we used. RESULTS section presents
graphics obtained by running applications on the network. In
section DISCUSSION OF RESULTS the results are
interpreted and discussed. Finally, the CONCLUSION section
presents the conclusions from the studies.

2. BACKGROUND
The dataflow model of computation is not new. It exists since
the 70s and is characterized by being data-driven. A program

dataflow can be represented by a directed graph, whose nodes
correspond to the instructions, and the edges, the flow of data.
Therefore, an instruction is executed only when all its
incoming edges have tokens (released by other nodes),
meaning that the data necessary for their implementation are
now available [5]. Figure 1 illustrates a data flow graph,
where lower nodes process as soon as the top node instruction
in this statement has been executed.

Figure 1 - Data Flow Graph.

IPNoSys has a computational model similar to the dataflow.
Its programs are divided into smaller units, called packages,
which encapsulate data and instructions. Packages travel over

the network topology that is a 2D grid 4x4 (16 nodes). Each
node corresponds to a routing and processing unit (RPU)
capable of processing packages and forwarding packages to
the next RPUs. Memory access is made via four memory
access units (MAU) that are distributed in the four corners of
the network, and are also responsible for injecting packages
into the system. The IOMAU component is responsible for
performing the function of an ordinary MAU, and performs

input and output operations (I/O).

3. WORKFLOW
In order to obtain desired results, it was essential to create a
tool able to generate a variety of dataflow programs to be
executed on the IPNoSys platform. This simple tool is based
on the purpose of generating synchronous dataflow programs
from entries such as the amount of packages and the number
of instructions per pack. As shown in Figure 3 we used the
generator, the pre-existing network assembler and the

simulator, each one receiving inputs and generating outputs.
Finally, it is generated the log file containing the simulation
results.

Figure 3 - Workflow for obtaining the results

4. RESULTS
The execution of an application in the simulation environment
IPNoSys network generates a log file where it can be seen the
number of cycles and the total energy spent to process the
entire program. From these logs, graphics were plotted to
obtain a better view of the samples to different test cases.

Figure 4 – Graphic Instructions x Cycles, 1 package.

The experiment conducted to obtain the graphic in Figure 4
consists of injecting only one package in the network varying

the amount of instructions per packages and instructions per

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

RPU. The graphic shows the number of cycles spent by the
network for each configuration.

Figure 5 – Graphic Instructions x Cycles, 4 packages.

The experiment conducted to obtain the graphic in Figure 5 is
the injection of 4 simultaneous packages in the network,
varying the amount of instructions per packages and
instructions per RPU. The graphic shows the number of cycles
spent by the network for each configuration.

Figure 6 – Graphic Instructions x Power, 1 package.

The experiment conducted to obtain the graphic in Figure 6,

consists of injecting only one packet in the network by
varying the amount of instructions per packages and
instructions per RPU. The graphic shows the energy spent by
the network for each configuration.

Figure 7 – Graphic Instructions x Power, 4 packages.

The experiment conducted to obtain the graphic in Figure 7

consists of injecting simultaneously 4 packages in the
network, varying the amount of instructions per packages and
instructions per RPU. The graphic shows the energy spent by
the network for each configuration.

Figure 8 - Linear regression of cycles, 1 package and 128 instructions per RPU.

X axis: instructions. Y axis: cycles.

Figure 8 represents the line obtained by the numerical method
of linear regression for an average case of testing for the
amount of cycles spent by the network, where each RPU was
programmed to perform up to 128 instructions in each
package, considering that only one package was injected into

the network and varying the amount of instructions per
package.

Figure 9 - Linear regression of cycles, 4 packages and 128 instructions per RPU.

X axis: instructions. Y axis: cycles.

Figure 9 represents the line obtained by the numerical method

of linear regression for an average case of testing for the
amount of cycles spent by the network, where each RPU was
programmed to perform up to 128 instructions in each
package, considering the injection of 4 packages in the
network and varying the amount of instructions per package.

Figure 10 – Linear regression of power consumption, 1 package and 128

instructions per RPU. X axis: instructions. Y axis: mW.

Figure 10 represents the line obtained by the numerical
method of linear regression for an average case of tests for the
energy spent by the network, where each RPU was

programmed to perform up to 128 instructions in each
package, considering the injection of 4 packages in the
network and varying the amount of instructions per package.

Figure 11 - Linear regression of power consumption, 4 packages and 128

instructions per RPU. X axis: instructions. Y axis: mW.

Figure 11 represents the line obtained by the numerical
method of linear regression for an average case of tests for to
the energy spent by the network, where each RPU was
programmed to perform up to 128 instructions in each
package, considering the injection of 4 packets in the network

and varying the amount of instructions per package.

5. DISCUSSION OF RESULTS

5.1 PERFORMANCE
Interpretation of the results of performance tests (in cycles)
shows that for each configuration (assuming that in this case,
the term configuration refers to the number of instructions

executed for each RPU and the amount of instruction per
package), as the number of packages in the network increases,
the number of cycles necessary for executing the program
remained almost constant, having an average increase of
2.5% for each package added.
The nearly linear behavior is due to the fact that all packages
injected into the network present instruction independence. A
package doesn’t the need to wait for the other’s processing,
ensuring a fully parallel implementation. Part of the cycles

spent to process the application can be justified by the
implementation of verification algorithms and treatment of
deadlocks.
From the regression was observed that the time spent in cycles
to process different programs with an equal number of
packages, varying only the instructions in each package,
presents a linear behavior, being easily estimable by the
function described in the figures 7 and 8.

5.2 POWER CONSUMPTION
From the graphics, it is concluded that by increasing the
number of packages in the network, the energy consumed

does not increase linearly with the instruction package, with a
behavior describable by a polynomial function. It was also
observed that the amount of energy required to process a
program showed a linear increase for the same configuration.
Furthermore, according to Figures 6 and 7, the power

expended decreases as the amount of instructions per RPU
increases. By increasing the number of instructions per RPU,
there is less communication between nodes, consequently, less
switching RPU ports and a lower buffer allocation for the
transfer of packages. When the number of instructions per
RPU is greater than or equal to the number of instructions per
package, data processing always happens on one single node,
causing under-utilization of network resources.

6. CONCLUSION
In this paper we evaluate the IPNoSys platform by
implementing a set of generic synchronous dataflow
applications, presenting the results in graphics, where it was

possible to observe extreme and medium cases of execution.
From the interpretation of results, we extracted an optimal
configuration for the IPNoSys the synchronous data flow
applications scenario.
IPNoSys by its computational model proved to be an ideal
architecture for synchronous dataflow applications. An
optimal configuration for the network will depend on its use
for a particular purpose. For large data processing it is ideal to

use it with their RPUs programmed to perform a large number
of instructions, because the closer this number is the amount
of instructions in the package, the higher the performance
(less cycle spending), and lower energy cost energy, by not
occurring a high transmission of packages among RPUs.
However, this practice under-utilize network resources, while
maintain a higher traffic through only four corner nodes.

7. REFERENCES
[1] FERNANDES, S. et al. Processing while routing: a
network-on-chip-based parallel system. In: IET Computers &

Digital Techniques, v. 3, n. 5, p. 525-538, 2009a. Available at:
< http://link.aip.org/link/?CDT/3/525/1 >

[2] FERNANDES, S.; OLIVEIRA, B. C.; SILVA, I. S. Using
NoC routers as processing elements. In: SBCCI, 2009b. Natal,
Brazil. ACM.

[3] FERNANDES, S. et al. IPNoSys: uma nova arquitetura

paralela baseada em redes em chip. In: IX Simpósio em
Sistemas Computacionais - WSCAD SSC 2008, 2008. Campo
Grande. SBC.

[4] ZEFERINO, C. A. Redes-em-Chip: Arquiteturas e
Modelos para Avaliação de Área e Desempenho.
2003. 242 Doutorado (Doutorado). Instituto de Informática,
Universidade Federal do Rio Grande do

Sul, Porto Alegre.

[5] LEE, E. A., MESSERSCHMITT, D. G., Synchronous
Data Flow, Proceedings of the IEEE, Vol 25, no., 9, Sept
1987.

