
Software Solution
1-

Ruhan Conceição
José Cláudio Sousa Júnior
Universidade Federal de Pelotas

CDTec - PET Computação
Pelotas, Brazil

{radconceicao, jcdsouza}
@inf.ufpel.edu.br

ABSTRACT

This paper presents a software solution for hardware optimization

of 1-D DCT 32 points used in the emerging video coding

HEVC – High Efficiency Video Coding. The 1-D DCT is used by

the 32x32 2-D DCT of the HEVC standard. The transforms stage

is one of the innovations proposed by HEVC, not only because of

the variable size (from 4x4 to 32x32) but also because higher

dimension transforms other than the traditional 4x4 and 8x8 are

used. The software presented in this work is design

than five billions combinations of hardware for

operations, in order to get the maximum sharing

Thus, through the result obtained by the software, it will be able to

implements an efficient and optimized hardware of the 1

32 points. Since a huge number of possibilities, this paper presents

partial results generated by the software.

Categories and Subject Descriptors
B.7. [INTEGRATED CIRCUITS]: Types and Design Styles

Algorithms implemented in hardware.

General Terms

Algorithms, Performance.

Keywords

Hardware Optimization, DCT, HEVC, Video coding.

1. INTRODUCTION
Nowadays, the resolution and the quality of digital videos have

been improving in a fast and steady manner. Additionally, such

videos are becoming supported by an increasing number of

electronic devices. Thus, the improvement of video

encoders/decoders in an extremely relevant activity in the current

scenario, since the many devices that process digital videos, must

be capable of processing high-resolution videos in real time. For

this reason, topics such as compression rate, video quality,

computational complexity and energy consumption must be

improved, hence they are thoroughly investigated this area.

Video coding is imperative in applications that handle digital

videos, since an uncompressed video requires a

bits to be represented [1]. H.264/AVC [2] is the latest video

coding standard available, presenting significant gains in

compressions when compared to the MPEG-2 standard [3]. On

January 2010, the JCT-VC (Joint Collaborative Team

Coding) was created, composed of experts from ITU

ISO/IEC, to start the development of a new video coding standard

Solution for Hardware Optimization
-D DCT of the HEVC

Ricardo Jeske
Universidade Federal de Pelotas

CDTEC – PPGC
Pelotas, Brazil

rgjeske@inf.ufpel.edu.br

Luciano
Julio C. B

Universidade Federal de Pelotas
CDTEC

Pelotas, Brazil

{julius,agostini}@inf.ufpel.edu.br

for hardware optimization

D DCT 32 points used in the emerging video coding standard

D DCT is used by

D DCT of the HEVC standard. The transforms stage

is one of the innovations proposed by HEVC, not only because of

the variable size (from 4x4 to 32x32) but also because higher

dimension transforms other than the traditional 4x4 and 8x8 are

design to test more

for 1-DCT 32 points

sharing of operations.

Thus, through the result obtained by the software, it will be able to

and optimized hardware of the 1-D DCT

this paper presents

ategories and Subject Descriptors

Types and Design Styles –

HEVC, Video coding.

resolution and the quality of digital videos have

been improving in a fast and steady manner. Additionally, such

videos are becoming supported by an increasing number of

electronic devices. Thus, the improvement of video

relevant activity in the current

scenario, since the many devices that process digital videos, must

resolution videos in real time. For

this reason, topics such as compression rate, video quality,

energy consumption must be

improved, hence they are thoroughly investigated this area.

Video coding is imperative in applications that handle digital

videos, since an uncompressed video requires a large volume of

s the latest video

coding standard available, presenting significant gains in

2 standard [3]. On

VC (Joint Collaborative Team – Video

Coding) was created, composed of experts from ITU-T and

EC, to start the development of a new video coding standard

called HEVC – High Efficiency Video Coding [4]. The goal of the

JCT-VC is to increase video compression in 50% while

maintaining the same computational complexity. HEVC is still

under development, but some important modifications related to

H.264/AVC were already defined.

On HEVC, each frame is divided into a sequence of square units

called treeblocks, which hold the information of chrominance and

luminance. The chrominance blocks dimensions depend

color sampling used. The current version of HEVC defines

treeblocks as areas containing 64x64 luminance samples and their

corresponding chrominance samples [5]

Each treeblock is composed of one or more basic Coding Units

(CU). A CU can be recursively divided into four blocks of the

same size starting from the treeblock and going all the way down

to a minimum of 8x8 samples. This recursive process forms a

quadtree composed of CU blocks, assuming dimensions that vary

from 8x8 pixels to the size of the treeblock itself, in other words,

64x64. Fig. 1 illustrates one possible partitioning of a treeblock,

forming a CU quadtree.

A generic video encoder can be represented as a sequence of

stages, where each stage is responsible for part of the coding

process. Among the different stages, the transforms hold an

important position. Normally by utilizing a DCT

Cosine Transform, the purpose of the transforms stage is to

concentrate the energy of an image in just a few numerical

coefficients. In doing so, the following stages (quantization and

entropy coding) can be performed in a much more efficient way.

Figure 1. Treeblock partitioning example

Optimization of

Luciano Agostini
Julio C. B. Mattos

Universidade Federal de Pelotas
CDTEC

Pelotas, Brazil

{julius,agostini}@inf.ufpel.edu.br

High Efficiency Video Coding [4]. The goal of the

VC is to increase video compression in 50% while

maintaining the same computational complexity. HEVC is still

but some important modifications related to

On HEVC, each frame is divided into a sequence of square units

called treeblocks, which hold the information of chrominance and

luminance. The chrominance blocks dimensions depend on the

color sampling used. The current version of HEVC defines

treeblocks as areas containing 64x64 luminance samples and their

ponding chrominance samples [5] [6].

Each treeblock is composed of one or more basic Coding Units

rsively divided into four blocks of the

same size starting from the treeblock and going all the way down

to a minimum of 8x8 samples. This recursive process forms a

quadtree composed of CU blocks, assuming dimensions that vary

f the treeblock itself, in other words,

64x64. Fig. 1 illustrates one possible partitioning of a treeblock,

A generic video encoder can be represented as a sequence of

stages, where each stage is responsible for part of the coding

ocess. Among the different stages, the transforms hold an

important position. Normally by utilizing a DCT – Discrete

Cosine Transform, the purpose of the transforms stage is to

concentrate the energy of an image in just a few numerical

ng so, the following stages (quantization and

entropy coding) can be performed in a much more efficient way.

Figure 1. Treeblock partitioning example

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

On HEVC, the basic units for the transform and quantization

operations are called Transform Units (TU). Their format is

always square and their dimensions can vary from 4x4 to 32x32

samples. As occurs with the CUs, TUs can be structured with

quadtrees. Each CU can contain one or more TUs.

The computation of DCT requires large number of operations,

such as sums, subtractions and multiplications. As it is known,

multipliers are very expensive in terms of hardware consumption,

making it necessary the use of sums/subtractions and shifts

instead these operations. By this replacement, it is possible to

share some operations among the equations used in the 1-D DCT

32 points.

The aim of this paper is to present a software that find, among five

billions possibilities, the best combinations of operations used in

the processing of 1-D DCT 32 points, in order to get the

maximum sharing of operations. Therefore, it will be possible to

implement an efficient and optimized hardware after, with a less

energy and area consumption.

Currently on version 4.0, the HEVC Model (HM) [7] was used as

a golden model for this project. This way, algorithmic validation

was performed by using data extracted from this software,

increasing the reliability of achieved results.

The paper is organized as follows. Section 2 discusses Discrete

Cosine Transform used in the emerging video coding standard

HEVC. Section 3 presents an overview of the software under

development. This software is organized in different modules.

Section 4 presents the partial results produced by the software.

Section 5 concludes and points out directions for further research.

2. DISCRETE COSINE TRANSFORM
HEVC perform four sizes of 2-D DCT: 4x4, 8x8, 16x16 and

32x32. In order to calculate this transform, it is necessary to

perform the 1-D DCT two times as follows. First, given an input

matrix, it is calculated the 1-D DCT for each line, and the result is

stored column by column in an intermediated matrix. After all

lines have been calculated, this process is done again, calculating

the 1-D DCT line by line from the intermediated matrix, and the

result is stored column by column in the output matrix. Thus, the

2-D DCT is performed from the input matrix to output matrix.

Since this work is focused on the 1-D DCT 32 points, it is

explained the processing of this size, although the other ones

follows the same idea. Each input of the 1-D DCT 32 points will

be called in this paper as Wn, which n represents the index of the

input (from 0 to 31). Sums and subtractions are performed among

the input, generating results denominated in this paper as an. The

sums and subtractions are done as follows in Table 1.

Table 1. First Operations on the Algorithm

Stage “a” Inputs

a0 W0 + W31

a1 W0 – W31

a2 W1 + W30

a3 W1 – W30

… …

a31 W15 – W16

All a’s indexed by odd numbers are straight used in the final

equation, where they are multiplied by the constants. The other

ones are operated among each other following the same idea of

the inputs. The focus of this work is the odd a’s, since the even

a’s could be treated as 1-D DCT 16 points [8].

Table 2 shows some equations that use the results of the odd a’s

in their processing. Every Xn represents the position of which

equation in the output vector indexed by the respective n.

Table 2. Some equations used in the computation of 1-D DCT

32 points

Xn Final equation

X1
90*a1 + 90*a3 + 88*a5 + 85*a7 + 82*a9 + 78*a11 +

+73*a13 + 67*a15 + 61*a17 + 54*a19 + 46*a21 +

+38*a23 + 31*a25 + 22*a27 + 13*a29 + 4*a31

X3
90*a1 + 82*a3 + 67*a5 + 46*a7 + 22*a9 - 4*a11 +

-31*a13 - 54*a15 - 73*a17 - 85*a19 - 90*a21 +

-88*a23 - 78*a25 - 61*a27 - 38*a29 - 13*a31

… …

X31
4*a1 - 13*a3 + 22*a5 -31*a7 + 38*a9 - 46*a11 +

+54*a13 + 61*a15 + 67*a17 - 73*a19 + 78*a21 +

-82*a23 + 85*a25 - 88*a27 + 90*a29 - 90*a31

Every constants used in each equation, is the same in the other

ones, although some of them can be negated. In the next topic it

will be explained how the software works, searching for the best

sharing of operations through the final equations.

3. THE SOFTWARE
The software was developed in C programming language. It is

divided in seven modules, which each one is responsible for a part

of the process to find the greater number of operations shared

among all sixteen equations.

3.1 Module 1 – Sum-and-shift generation
For each constant that is used in the final equations, the module 1

generates sums and shifts that can be used instead the

multiplications. Module 1 purposes only solutions that used up to

4 sums and shifts until six bits.

Table 3 shows an example of module 1 result from the constant

13. Each column represents the shifts and sums that can be used

instead the multiplications, and each line shows all these

possibilities.

Table 3. An example of module 1 results for the constant 13

Number of shifted bits

 =
6 5 4 3 2 1 +1

13 0 0 0 + + 0 + <<3 + <<2 + 1

13 0 0 0 + + + - <<3 + <<2 + <<1 – 1

13 0 0 + - + 0 + <<4 - <<3 + <<2 + 1

13 0 0 + 0 - 0 + <<4 - <<2 + <<1 + 1

13 0 0 + 0 - + - <<4 - <<2 + <<1 - 1

13 0 0 + 0 0 - - <<4 - << 2 - 1

13 0 + - 0 - 0 + <<5 - <<4 - <<2 + 1

13 0 + - 0 0 - - <<5 - <<4 - <<1 - 1

The result generated from module 1 to each constant is used as an

input on the module 2.

3.2 Module 2 – Sum-and-shift combination
There are sixteen constants and the module 1 generates for each

one all possibilities to swap the multiplications to

sums/subtractions and shifts. The module 2 basically combines all

possibilities generated for each constant in module 1 with all

possibilities of the other constants. Altogether are generated more

than 5 x 109 possibilities. Each combination is used as an input to

the module 3.

This number is obtained (five billions of possibilities) through

multiply of the number of possibilities generated for each constant

from module 1, this computation is shown in equation 1. Table 4

shows the number of sum-and-shift possibilities generated for

each constant.

Table 4. Number of sum-and-shift possibilities to be used

instead multiplications for each constant

Constants
Number of

combinations
Constants

Number of

combinations

90 3 61 4

90 3 54 6

88 3 46 6

85 1 38 7

82 3 31 5

78 4 22 8

73 3 13 8

67 4 4 4

N_possibilities = 3x3x3x1x3x4x3x4x4x6x6x7x5x8x8x4

 N_possibilities = 5,016,453,120 (1)

If the module 1 did not restrict the number of sums up to four,

would be generated almost 2 x 1015 possibilities, becoming

unfeasible the software performing.

3.3 Module 3 – Adaptation for all equations
Table 2 shows that the order and the signal of the constants

change among the sixteen equations. Therefore, the module 3

adapts the generated combination on the module 2 for each of the

sixteen equations. Moreover, this module organizes the equations

by the shifts, and no more by the constants multiplications.

For example, the equation X1 can be represented as Equation 2.

 X1 = (a1+a3+a5+a7+a9+a11+a13+a15+a17) >>6 +

+ (a19+a21+a23+a25) >>5 +

+ (a1+a3+a5+a7+a9+a19+a27) >>4 +

+ (a1+a3+a5+a11+a13-a17+a21+a29) >>3 +

+ (a7+a11+a17+a19+a21+a23-a25+a27+a29+a31) >>2 +

+ (a1+a3+a9+a11+a15+a19+a21+a23+a25+a27) >>1 +

 + (a7+a13+a15+a17+a25+a29) (2)

This type of result is generated for all sixteen equations and used

as an input in the module 4.

3.4 Module 4 – B-operations generation
Module 4 basically groups the a’s in pairs, generating sums and

subtractions operations called b. For each operation b created, the

a’s pair is replaced by the respective b everywhere they are found

among the sixteen equations.

Two methods are done to choose which operation would be

created. These methods are called higher occurrence and pair

search and they will be explained below.

3.4.1 Higher Occurrence
This method searches which pair of a’s has higher occurrence

among all equations. After it is found, the software replaces the a

pair by a b operation. Then, the software begins to find again

other a’s which is the pair that has higher occurrence. This

process is finished when there is not more than one ‘a’ in each

line.

For example, if the sum “a1 + a3” were elected as the operation

with the higher occurrence, the Equation 2 will be transformed in

Equation 3.

 X1 = (b0+a5+a7+a9+a11+a13+a15+a17) >>6 +

+ (a19+a21+a23+a25) >>5 +

+ (b0+a5+a7+a9+a19+a27) >>4 +

+ (b0+a5+a11+a13-a17+a21+a29) >>3 +

+ (a7+a11+a17+a19+a21+a23-a25+a27+a29+a31) >>2 +

+ (b0+a9+a11+a15+a19+a21+a23+a25+a27) >>1 +

 + (a7+a13+a15+a17+a25+a29) (3)

3.4.2 Pair Search
This method searches only two a’s in each line. If the software

find it, then this pair is called as an operation bn and every

occurrence is replaced by the respective operation b.

If it is not found any pair, the software performs the higher

occurrence methods.

3.5 Module 5, 6 and 7 – C, D and E-

operations generation
The next modules follow the same idea of the module 4. The

module 5 perform the higher occurrence and the pair search

among the operations b and the remaining a’s generating the

operations called d. The same is done by the modules 6 and 7,

generating respectively d and e operations.

3.6 Higher Occurrence or Pair Search
For each combination generated in the module 2 and adapted by

the module 3, the next modules perform two methods in order to

replace the reminiscent operations, higher occurrence and pair

search. The software tests all possibilities, using these two

methods in every module. Thus, for each of the five billion

combinations, it is done sixteen combinations through the use of

higher occurrence and pair search methods.

The software selects as the best combination the output produced

by the Equation 4.

 N_bits = 10 * nb + 11 * nc + 12 * nd + 13 * ne (4)

N_bits is the number of bits used considering all adders. For

example, the sum b needs 10-bit adders, and nb represents the

number of b operations used by the current combination. Thus,

considering that the operations c, d and e need respectively 11-bit,

12-bit and 13-bits adders, it is possible to compute the number of

bits (N_bits).

4. RESULTS
The results of this paper are partial results because until the

present moment, the software does not process all combinations,

since there are more than five billons possibilities of them.

However it is possible to show some results.

The software could find a combination that generates only 37 b

operations; meanwhile manually it was found a combination that

resulted in 104 b operations at least. The manually way follows

the same technique used by Jeske [9], although it was developed

for the 1-D DCT 16 points.

Table 5 shows comparative results between the software and the

manual optimization. The better result shows the less number of b

operations found by the module 4, from the configuration

generated by the module 2. In the other hand, the worse result

shows the opposite, the higher number of b operations.

Table 5. Comparative between the software and the manual

optimization

Operation Result Number of b’s

Manual Single 106

Software Better 37

Software Worse 143

The result generated by the software was validated using the HM

as a golden model. The main goal of the software has been

achieving, due it is possible to generate a validated hardware

configuration extremely faster.

5. CONCLUSIONS
The emerging video coding standard – HEVC - is being

developed in order to fulfill the demand for high-resolution

videos, which are supported by an increasing variety of devices

and applications. Henceforth, algorithmic optimization and

architectural design investigations for the coding tools of this

standard is an activity of utmost importance in the current

scenario.

The aim of this work was to develop a software that is able to find

the maximum share of operations in order to produce an

optimized hardware. This work is dedicated to the 1-D DCT 32

points of the HEVC, which is part of the 32x32 2-D DCT.

The paper shows that there are more than five billion possibilities

to combine all the operations, demonstrating the importance of

this work. The partial results show that this work has been

achieving its goals.

As a future work, it is planned to design the software for others

DCT sizes.

6. ACKNOWLEDGMENTS
This work was supported by grants from the following sponsor

agencies: CAPES – Programa PET, CNPq and Fapergs.

7. REFERENCES
[1] Agostini, L. Desenvolvimento de Arquiteturas de Alto

Desempenho Dedicadas a Compressão de Vídeo Segundo o

Padrão H.264/AVC. 2007. 172f. Tese (Doutorado em

Ciência da Computação) – Instituto de Informática, UFRGS,

Porto Alegre.

[2] International Telecommunication Union. “ITU-T

Recommendation H.264/AVC (03/05): advanced video

coding for generic audiovisual services”. 2005.

[3] International Telecommunication Union. “ITU-T

Recommendation H.262 (11/94): generic coding of moving

pictures and associated audio information – part 2: video”.

1994.

[4] Joint Collaborative Team on Video Coding (JCT-VC).

Available at: http://www.itu.int/en/ITU-T/studygroups

/com16/video/Pages/jctvc.aspx

[5] Joint Collaborative Team on Video Coding (JCT-VC) of

ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 – “HM3:

High Efficiency Video Coding (HEVC) Test Model 3

Encoder Description”, 5th Meeting: Geneva, CH, 16-23

March, 2011.

[6] W. Han, et al. “Improved video compression efficiency

through Flexible Unit Representation and Corresponding

Extension of Coding Tools”, IEEE Transactions on Circuits

and Systems for Video Technology. Vol. 20, pp. 1709-1720.

December 2010.

[7] ISO/IEC-JTC1/SC29/WG11, “HEVC Reference Software

Manual”, ed. Geneva, Switzerland, 2011.

[8] Hecktheuer, B., Conceição, R., Souza, J., Jeske, R., Agostini,

L., and Mattos, J. 2012. Reconfigurable Architecture

Implementation for the 1-D Discrete Cosine Transform. In

Southern Programmable Logic Design Forum (Bento

Gonçalves, Brazil, March 20 – 23, 2012)

[9] Jeske, R., Souza, J., Wrege, G., Conceição, R., Grellert, M.,

Mattos, J., Agostini, L. 2012. Low Cost and High throughput

Multiplierless Design of a 16 Point 1-D DCT of the new

HEVC Video Coding Standard. In Southern Programmable

Logic (Bento Gonçalves, Brazil, March 20 – 23, 2012)

