
An Automatic Flow for Timing and Static Power Cell

Characterization
Ingrid C. Machado, Rafael B. Schivittz, Cristina Meinhardt, Paulo F. Butzen

Universidade Federal do Rio Grande – FURG
Computer Science Center – C3

Rio Grande, Brazil

{ingridmachado, rafaelschivittz, cristinameinhardt, paulofbutzen}@furg.br

ABSTRACT

Characterize a logic gate is the process of establishing reference

values about timing and power to the project designers in a

Standard Cell project. In this paper, we present an automatic flow

to characterize standard cells about timing characteristics and

static power consumption. This flow is composed of two main

steps: timing characterization and static power characterization.

The tool is designed to deal with different technologies, power

supplies, transistors arrangements and others boundary

conditions.

Categories and Subject Descriptors

B.6.3 [Hardware]: Logical Design - Design Aids - Automatic

synthesis

General Terms

Algorithms, Measurement, Design, Verification.

Keywords

Standard Cell Flow, Logic Gates Timing analysis, Static Power,

CAD tool.

1. INTRODUCTION
Integrated circuits (ICs) are increasingly present in daily life

serving the diverse personal needs. Therefore, different types of

devices are required, each one serving a particular design feature.

For many projects, the performance is the main characteristic

being measured by the frequency of operation of the device. In

other projects, the power consumption is a major constraint. And

in many cases, you want to find the best possible relation between

power consumption and performance that meets the characteristics

of the device. These design conditions are called design

constraints and define the set of design specifications of an

integrated circuit.

There are two main methodologies for design integrated

circuit design [1]: full custom design or standard cell design. In

full custom design, all circuit is specially designed for the project,

optimizing area, power and performance to the maximum for the

specified function. All steps, including the layout are customized

for a single project, i.e., it is necessary to specify the layout of

each individual transistor and the interconnections between them.

Differently, standard cell methodology is an example of design

abstraction, whereby a low-level very-large-scale integration

(VLSI) layout is encapsulated into an abstract logic

representation. Along with semiconductor manufacturing

advances, standard cell methodology has helped designers scale

application-specific integrated circuits (ASICs) from

comparatively simple single-function ICs with several thousand

gates, to complex multi-million gate system-on-a-chip (SoC)

devices. At the low level of design, standard cell libraries are

themselves designed using full-custom design techniques[1].

In the design of standard cells is necessary to establishing

information about timing, power and noise for each cell. This

information set characterize the standard cell. To determine the

cell characteristics for a large set of logic functions is a hard task.

Even the simplest functions present a lot of different behavior

according to, for example, the internal design of the transistors in

the circuits, technology, transistor sizing, and the boundary

constraints.

In this context, a flow to automatic characterizes logic functions is

an important computer aid design (CAD) tool. In this work, an

automatic flow to determine timing and static power

characteristics of standard cells. This tool is divided in two main

blocks: timing characterization and static power characterization.

Next Section introduces some background concepts about timing

and power extraction. Section 3 presents the automatic flow

proposed and the timing characterization tool and static power

characterization tool are described in the sub-sections 3.1 and 3.2

respectively. Finally, Section 4 discusses some conclusions about

the tool development and the future works.

2. BACKGROUND
This section presents a collection of concepts and definitions

regarding to the tool functionality described in Section 3.

A standard cell is a group of transistors and interconnection

structures that provides a Boolean logic function or a storage

function. The functional behavior of a combinational logic cell is

commonly captured in the form of a truth table or Boolean algebra

equation.

A way to represent the Truth table as input for a program is the

hexadecimal format. This format is defined by the conversion of

the truth table output to the hexadecimal representation, where the

I0 entry of the truth table represents the most significant digit and

the I2
k
-1

, entry represents the least significant digit, where k

represents the number of entries in the truth table. For instance,

for the NOR2 logic gate, the truth table is showed in Figure 1(a).

The input combination I0 has the output O0 = 1, in other words,

when A = 0 and B = 0, F = 1. Ordering the output values, and

considering the I0 entry as the most significant bit, the NOR2 gate

can be described as the sequence of outputs O: (1,0,0,0). Reading

the digits, the NOR2 gate is represented in hexadecimal format by

the value 8(h).

http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Interconnection
http://en.wikipedia.org/wiki/VLSI
http://en.wikipedia.org/wiki/Integrated_circuit_layout
http://en.wikipedia.org/wiki/Semiconductor_manufacturing
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Truth_table
http://en.wikipedia.org/wiki/Boolean_algebra_(logic)

Usually, the initial design of a standard cell is developed at the

transistor level, in the form of transistor netlist or schematic view.

The netlist is a nodal description of transistors, of their

connections to each other, and of their terminals to the external

environment.

Characterize a logic gate is the process of establishing reference

values about timing and power to the project designers. This

values need to be realistic and reflects all electrical behaviors of

the circuit. This work address two important steps in the cell

characterization: determine the delays and static power

consumption.

Delay can be divided in propagation delay and transition delay.

Propagation delay is the time required for a digital signal to travel

from the input(s) of a logic gate to the output. Propagation delay

is the time for a gate output to arrive at 50% of its final value. The

propagation delay from a transition where the output is high and

goes to low is named TpHL and the propagation delay from the

output going high is named TpLH. Terminology TpHL and TpLH

always refers to the transition on the output [1].

Transition time is generally used to mean the time it takes for a

gate to arrive at 10% (for a logic 0) or 90% (for a logic 1) of its

final value. The terminology for transition time to output fall is

Tfall and for the output rises is Trise.

To determine the transition and propagation delays is necessary

evaluate all the arches for the function. Arch of a function is a pair

of input combinations that produces a change in the logical state

of the output. A delay arch corresponds to the delay measured

from a change in gate input to the change in gate output for a

specific steady state combination of other input signal values.

For a given logical operation, each arch Aij represents combining

pairs of I inputs, which one transition i to j causes a change in the

output state, allowing to measure the delay and propagation times.

The power dissipation in digital CMOS circuits can be

decomposed in two parts, which are summarized in the following

equation (1). The first term represents the dynamic component of

power. This portion is also composed by two parts as presented in

equation (2).

Ptotal = Pdynamic + Pstatic (1)

Pdynamic = Pswitching + Pshort-circuit (2)

The switching power Pswitching is due to the charge and discharge

of the capacitors driven by the circuit. The short-circuit power

Pshort-circuit is caused by the short circuit currents that arise when

pairs of PMOS/NMOS transistors are conducting simultaneously

in a CMOS gate. It is well explored in [2].

The second term in equation (1) represents the static power

component of total power. It is also called leakage power. It is due

to the leakage current that flows in the circuit such as

subthreshold, gate tunneling or reverse-biased PN junction

leakages for instance [3]. For nanometer processes, Pstatic becomes

more important and should be considered in the total power

dissipation analysis [4].

The output capacitance CL of a CMOS gate represents the total

capacitance associated with the gate output. This includes the

internal capacitances of the MOSFET devices, the wiring

capacitance, and the capacitance of the device that the output is

connected to. Others examples of boundary parameters are

temperature and slope of the input signals (in slope).

3. Automatic flow for timing and static power

cell characterization
This work presents an automatic flow to determine timing and

static power characteristics of standard cells. This tool is divided

in two main blocks: timing characterization and static power

characterization. The tool is developed in C++ with an optional

graphic interface developed with QT Creator IDE [5]. Currently

the tool allows the configuration of 13 parameters. The input

parameters are divided in three classes of parameters:

 Logic function parameters: function name, truth table in

hexadecimal format*.

 Circuit parameters: netlist, Supply source name, Ground

name, number of entries, technology.

 Boundary Parameters: inslope*, transition step*, output

capacitance*, temperature.

It is also possible to determine the name of the output files.

Parameters marked with * are only necessary for timing

characterization. Also, this flow allows the user to call each one of

the characterization tool individually. All the electrical

simulations are executed with NGSPICE [6].

3.1 Temporal Characterization
The temporal characterization of logic gates is a task that can be

very laborious, according to the logical operation and the number

of entries. The temporal characterization tool receives as entry the

logical function parameters (f), circuit parameters (c) and

boundary parameters (b) and process all this information to

automatic generate the complete simulation file necessary to

measure the timing characteristics of a logic gate. The

implementation is divided in five steps, as showed in Algorithm 1.

According to the (f,c,b) parameters, the temporal characterization

starts with the generation of the arches of the function (l.2) that

receives as input the number of entries of the logical function (k)

and the logical function represented by its output (O) and returns

an adjacent matrix (M). Next step (l.3) is the input waveform

generation for make possible determines all the propagation

delays for the function. This step receives the adjacent matrix

generated in the previous step and returns the transitions path

generated from the matrix (PA). Step 3 generate the source signals

for all the entries of the circuit obeying the PA and returns the set

of waveforms for the inputs (IA). Step 4 generate the correct

description of the measurement commands in SPICE language

receiving the set of waveforms (IA) and a list of the falls and rises

in the output for the transition path (PA) generated. Finally, step 5

composes all information generated in the previous steps with the

circuit and boundary parameters to generate the complete file

description to the simulation.

Algorithm 1 – Temporal Characterization Algorithm high

level description

1. Temporal Characterization (f, c, b)

2. M = generate_arches(k, O)

3. PA = generate_waveform(M)

4. IA = generate_source_signals(PA)

5. MeasureA = generate_measure (IA, VRA, VFA)

6. Results = Simulate (Generate_file (IA, MeasureA, netlist))

http://en.wikipedia.org/wiki/Netlist
http://whatis.techtarget.com/definition/0,,sid9_gci213512,00.html

The first step obtains the delay arches, found through the analysis

of the truth table of the logic gate being simulated. For this tool,

the logic function is described in the hexadecimal format. The set

of all arches of a logical operation is named SA and it is used to

fill an adjacency matrix M of size (2k-1) x (2k-1), in other words,

with one line and one column for each input combination. The

arches are inserted as Boolean values into the adjacency matrix.

Cells filled with the value 1 represents arches and cells filled with

the value 0 represents that the transitions between the entries

combinations do not change the state of the output.

Figure 1 (a) shows the truth table for the NOR2 logic gate It is

represented as 8(h) in the hexadecimal format Fig. 1 (b). The set of

delay arches (A) for the function are shown in Fig.1 (c) and the

adjacent matrix (M) generated for the NOR2 logical function is

described in Figure 1 (d). Generate_Arches(k, O) function,

showed in Algorithm 2, describes how to obtain the arches and

the construction of the adjacency matrix.

Figure 1 – Truth table (a), hexadecimal format representation,

the set of Arches (c) and adjacent matrix (d) for NOR2

logical function

Algorithm 2 – Generate_Arches (k, O)

Generate_waveform (M) function is a greed algorithm that uses

the adjacency matrix (M) to define how the waveforms should be

described for a simulation capable to describe all the transitions

optimizing the execution time. PA represents the path build from

the adjacency matrix. Breadth –first and Depth- First search

algorithms [7] are evaluated to generate the best path optimizing

the number of simulation steps (execution time) however they

fails to find one reasonable solution. The greed solution for this

function is showed in Algorithm 3 and presents good results and

smalls modifications are currently being explored to find the best

path minimizing the execution time.

Algorithm 3 - Generate_waveform(M) function

The third step uses the description of the waveforms to generate

the source signals (IA), used as entries in the electrical simulator.

The fourth step uses the description of the waveforms to generate

the measures of the delay and propagation times. The fifth step

gathers the outputs of the previous steps to generate the full file

for simulation, which will be used by the electrical simulator.

With this file, the electrical simulator will generate the data for the

temporal characterization of the logical gate.

Table 1 complete the example for a NOR2 gate showing the

timing characteristics generate for a classical static CMOS NOR2

gate in the 32nm predictive technology [8] with CL = 1f, inslope

= 10ps and supply voltage = 1V. The table describes the delay arc

adopted to generate the transition delay and the propagation delay

respectively.

Table 1 - NOR2 gate temporal characterization

Arch Transition time (ps) Propagation time (ps)

A[0,2] tfall_a_b0 12.06 tphl_a_b0 6.99

A[2,0] trise_a_b0 38.78 tplh_a_b0 19.72

A[0,1] tfall_b_a0 11.11 tphl_b_a0 6,52

A[1,0] trise_b_a0 38.81 tplh_b_a0 17.50

3.2 Static power characterization
The static power characterization of a circuit evaluates all

possibilities of combination that the circuit can persists static, i.e.,

with no changes in its entries. To one circuit with k entries, we

will have 2k-1 possibilities to be evaluated, resulting in 2k-1

values of static power consumption. This means that all entries

combinations have to be analyzed to be generated the complete e

set of files F capable to obtain all the static powers for a logic

gate, and also added it in the set of entries E.

For that, the static power characterization tool was developed in 4

steps, described in Algorithm 4.

Different of the initial steps of the electric power characterization,

for the static characterization the electrical circuit diagram is

essential to determine the static power consumption. Different

transistor arrangement, sizing and other boundary conditions are

fundamental since the first steps of the static power

characterization. After receive the circuit and boundary

parameters, the execution takes few seconds, reducing all the

work to analyze the circuit, having, in an automatic and fast

manner, all information to improve the development of a circuit

with specific characteristics.

 A B F

I0 0 0 1

I1 0 1 0

I2 1 0 0

I3 1 1 0

1: Generate_waveform(M)

2: Initialization

 PA = Ø, i = 0, j = 0

3: for each i ≤ (2k-1)

4: for each j ≤ (2k-1)

5: if Mij = 1 then

6: PA = (i, j)

7: M[i,j] = 0

8: i = j

9: return PA

1: Generate_Arches (k, O)

2: Initialization

3: SA = Ø, i = 0, j = 0

4: f or each i ≤ (2k-1)

5: for each j ≤ (2k-1)

6: if O[i] ≠ O[j] then

7: SA = A [i,j]

8: M[i,j] = 1

9: else

10: M[i,j] = 0

11: return M;

F= 0110 = 6(h)

(a)

(b)

(a)

Set of Arches (SA):

A[0,1], A[1,0], A[0,2], A[2,0]

(b) (d)

M =

F = (1,0,0,0) = 8(h)

(c)

Algorithm 4 – Static Power Characterization Algorithm high

level description

In the first stage of implementation (l.2) of the tool is held data

entry tool, such as the technology used, the file with the circuit,

the number of inputs of the circuit, power supply, among others.

When the tool detects the number of entries, it adopts a hash table

to store the information in their respective places, for a better

search of values within the tool. Each piece of information

inserted into the initialization of the tool is stored and prepared

for be used in the future, for example, information about the

number of inputs of the circuit. The second step is to generate all

the static states combinations (l.3). To perform the combination of

input voltages, in order to satisfy all states, the algorithm adopts a

masking bit procedure that completes the combination of inputs.

Such that, each simulation file has its own state to be analyzed,

thus avoiding a repetition of information or a simulation

unnecessary.

The third step is the creation of the files made with combinations

of input voltages from all sources involved, so as to generate all

simulation files. This step is described in Algorithm 5. The

simulation file is done inserting all parameters needed to generate

the input file for the electrical simulation. This step accomplishes

two procedures in order to optimize the runtime of the tool. Thus

the analysis is done in the best way possible.

Algorithm 5 – Generate_files (I, E, netlist) function

The fourth step treats the output files of the program, filtering

only the information you need, making information visualization

much faster and more organized. The relevant information is

returned to the user.

Table 2 represents one example for a NOR2 gate. For a function

with two entries, we will have 4 different combinations of entries

that should be analyzed. In the end of the static characterization,

we have the results of the static current for the respective values in

the entries of the function. For this experiment, was used a

classical static CMOS NOR2 gate described in the predictive

32nm technology [8].

Table 2 - Static Current results for a NOR2 gate

4. CONCLUSIONS AND FUTURE WORKS
Characterize a logic gate is an important task in a standard cell

design flow. This work developed and presented an automatic

flow to determine two important steps of the cell characterization:

timing and static power characterization. Timing constrains are

one of the most relevant characteristics of a circuit for the strict

relation on the final frequency of operation of a project. Static

power becomes more important in nanometer technologies and the

designers need to take into account project approaches to deal

with the increase in the static consumption. The proposed flow

addresses these two characteristics and the validation tests proved

that this flow is perfectly able to deal with complex functions.

Future works include extend the flow to incorporate dynamic

power consumption characterization and detailed information

about static power components. Also is considered start to

characterize cells about noise and variability.

5. ACKNOWLEDGMENTS
This work has been supported in part by the Brazilian National

Research Council (CNPq - Brazil) and by scientific initiation

program of the Universidade Federal do Rio Grande – Furg.

6. REFERENCES
[1]Rabaey, Jan M. et al. Digital Integrated Circuits. Prentice-Hall.

Ed. 2., 2003.

[2] Veendrick, H. J. M., “Short-circuit dissipation of static CMOS

circuitry and its impact on the design of buffer circuits,” Journal

of Solid-State Circuits, vol. 19, no. 4, pp. 468–473, Aug. 1984.

 [3] ROY, K. et al. “Leakage Current Mechanisms and Leakage

Reduction Techniques in Deep-Submicrometer CMOS Circuits,”

Proceedings of IEEE, vol. 91, no. 2, Feb. 2003, pp. 302-327.

[4] International Technology Roadmap for Semiconductors, 2007

Edition. Available at http://public.itrs.net

[5] QT Creator IDE. Available: http://qt.digia.com

[6] NGspice. [Online]. Available: http://ngspice.sourceforge.net/.

[7]Cormen, Thomas H.; et al. Introduction to Algorithms. MIT

Press, 2001

[8] Y. Cao, T. Sato, D. Sylvester, M.Orshansky, C. Hu., "New

paradigm ofpredictive MOSFET and interconnect modeling for

early circuit design," Proc.IEEE Custom Integrated Circuits

Conference, pp. 201-204, 2000

Entries (E) Istatic (nA)

I[0,0] 37.65

I[0,1] 9.770

I[1,0] 1.736

I[1,1] 553.26

1. Generate_files (I, E, netlist)

2. Initialize

3. k= Ø; i= Ø;

4. for each i < (2k-1)

5. create F[i];

6. for each E in (E[0] ... E[n])

7. F[i] = E[j] + I[i , j]

8. i++

9. return F

1. Static Power Characterization (f, c, b)

2. Process_input_parameters();

3. E = Generate_static_states()

4. F = Generate_files (I,E, netlist)

5. Results = Simulate (F)

6. Final_results = Format_results (Results)

