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ABSTRACT 

In this work is presented a multilevel stochastic circuit. It is an 

innovating approach compared to current works. Some of the 

advantages of using stochastic computing are that it is possible to 

build processing circuits using little hardware. Furthermore this 

technique is an attractive solution when fault tolerance is desired. 

Nevertheless this technique presents some disadvantages: a 

dynamic performance that slows with the need for resolution and 

random fluctuations of stochastic bit-streams. Thereby is 

presented an approach that aims to reduce the stochastic bit-

stream variance and increase the dynamic performance through 

dynamic range subdivision. 

Categories and Subject Descriptors 

G.3 [Probability and Statistics]: distribution functions,random 

number generation, statistics computing. 

General Terms 

Measurement, Performance, Design, Reliability, Experimentation, 

Verification. 

Keywords 

Stochastic computing, oversampling, stochastic logic. 

1. INTRODUCTION 
Stochastic processing is a well-known technique to design 

arithmetic circuits by encoding variables as expected values of 

uncorrelated pulse streams [1]. Changing numeric data 

representation from binary radix to stochastic streams allows for 

arithmetic operators that consume a very low amount of area and 

are well suited to algorithms with massive parallelism of operators 

[2]. Also, stochastic modulation is one of the data representation 

techniques that have a natural resistance to soft errors and a 

tendency to show graceful performance degradation when 

subjected to multiple failures [3],[4]. 

Since its first introduction, stochastic circuits (SC) have been used 

to address many different applications [2], [3], [4]. More recently 

stochastic arithmetic has been used to LDPC decoding [5] and 

image processing [6]. Some recent research  has focused on 

systematic design methodologies for stochastic operators using 

finite state machines [7], [8] and spectral transforms [9]. 

Main disadvantage of stochastic arithmetic is its demand for 

relatively high number of cycles to accurately represent variables 

with a given resolution. Contrary to radix binary numbers where 

word length increases linearly with the resolution r, in stochastic 

arithmetic word length is an exponential function of r. Compared 

with radix binary arithmetic, the stochastic arithmetic presents 

larger computational error due to stochastic bit-streams 

fluctuations. Also, although research indicates that time/area 

product favours SC over binary radix serial (BRI) architectures 

for resolutions below ten bits [4], SC presents variance 

degradation along the data path that makes then harder to 

successfully design [9]. 

Since variance control in the circuit is fundamental to its 

precise operation, a thorough variance analysis must be included 

in the SC design flow [9]. Although variance in the output of the 

stochastic number generators (SNG) closely resembles 

theexpected values for a Bernoulli series, subsequent operators 

will change its distribution. It is, therefore, very important for SC 

design that to have a tool to estimate variance. 

When compared to recent research of in SC, this work presents 

some important differences. Previous research has focused mainly 

on single bit representation of stochastic signals [2], [3], [4], [5]. 

SC is mainly explored as a way to reduce the area taken by the 

operators on the implementation of massively parallel algorithm. 

Our work mainly aims to take advantage of SC fault tolerance 

characteristics; therefore we focus on parallel stochastic data 

representation as a way to reduce latency issues. A recent paper 

proposes a parallel stochastic circuit to perform numerical 

integration [6], it does not, however, explore the dynamic range 

sub-division to create a multilevel parallel stochastic coding like 

this paper does. 

Finally, our proposal for multilevel stochastic is a technique 

that involves the weighting, or masking, of the signals in the 

stochastic number generator (SNG). The idea bears some 

resemblance to the weighted stochastic series introduced by Gupta 

and Kumaresan to prove the feasibility of exact stochastic 

multiplication [10]. Our proposal, however, starts from the full 

dynamic range of the signal and make a few partitions while 

previous work operates a bit by bit weighting. This difference 

implies that our paper must define new stochastic operators to 

perform both summation and product on multilevel stochastic 

coded (MSC) signals.   

The remainder of this paper is organized as follows: section 2 

presents the basic principles of stochastic computation, their 

resolution and variance characteristics. Section 3 presents the 

multilevel and parallel data coding techniques. Simulations of the 

proposed methods are shown in section 4. Section 5 presents  

resultsand discussions of the practical implementations and 

section 6 conclusions and future works. 

2. STOCHASTIC ARITHMETIC 
Stochastic systems make pseudo analog operations using 

stochastically coded pulse sequences [10]. Stochastic computing 

is an unconventional technique that processes data in the form of 

probabilities represented by bit-streams [5].This type of 

representation allows arithmetic operations are performed through 

simple circuits. 

The information is converted into a synchronous pulse sequence 

that codifies the information as the probability, at a given clock 

cycle, of the pulse being at “high level”. Equation 1 defines a 

stochastic pulse stream. 



𝑝𝑥 𝑡 =  𝑢𝑘(𝑡) ∙ 𝜒𝑘

∞

𝑘=−∞

 
 

(1) 
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         𝑢 𝑡 =  
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And 

𝜒𝑘 =  
 𝑃  𝜒𝑘 = 1  = 𝑝

 𝑃  𝜒𝑘 = 0  = 1 − 𝑝
  

 

The process of change  the numeric data representation from 

binary radix to stochastic streamsinvolves the generation of an n-

bit  random  binary  number  in  each clock  cycle by a  pseudo-

random  number  generator, and  comparing it to the  n-bit  input  

binary  number. The comparator produces 1 if the random number 

is less than the binary  number  and a 0 otherwise. Assuming that 

the random numbers are uniformly distributed over the interval 

[Xmin,Xmax], the probability of a 1 appearing at the output of the 

comparator at each clock cycle is equal to the binary input of the 

converter interpreted as a fractional number (see figure 1) [2]. 

 

 
 

To obtain the original information,that is, to convert the stochastic 

number to the radix binaryformatit is necessary to remember that 

the stochastic number value 𝑥 𝑡 is given by the density of 1's in 

its bit-stream form, thus it suffices to count these 1's in order to 

extract p[2], this process can be viewed as a low pass process. 

 

Figure 2 – Stochastic bit-stream to binary radix converter. 

Whereas xisa limited binary number within the range [Xmax, 

Xmin], it can be represented as a bit streampx with symbols 

{0,1}, the expected value of px is given by equation 2. Where 

XN is the normalized value of x,and its limits are dependent on the 

chosen domain (symbols {p0, p1}). 

E 𝑝𝑥 = xN  (4) 

Table 1 shows the normalization to fourSC domains. 

Throughout this paper, unless told otherwise, we will be working 

with unipolar representation (UP). It must be noted that results 

can be generalized for the other domains. 

Table 1 – Stochastic circuits domains normalized. 

Normalization Alphabet SC domain  

𝑥𝑁  =  
𝑥 –  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 
{0=0,1=1} Unipolar (UP) 

𝑥𝑁  =  
𝑋𝑚𝑖𝑛 − 𝑥  

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

{0=0,1=-1} Inverse unipolar 
(IUP) 

𝑥𝑁  =  
𝑥 −  𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛  

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 
{0=-1,1=+1} Bipolar (BP) 

𝑥𝑁  =  
 𝑋𝑚𝑎𝑥 + 𝑋𝑚𝑖𝑛  − 𝑥

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 
{0=+1,1=-1} Inverse Bipolar 

(IBP) 
 

2.1 Resolution and Convergence 
Given that 𝜇𝑝𝑥 ,𝐾, where K is the word length of the bit-stream, is a 

K-points estimator of the average of 𝑝𝑥given by 𝜇𝑝𝑥 ,𝐾 =

 
1

𝐾
 𝑝𝑥  𝑘 𝐾

𝑘=1 → 𝐸 𝑝𝑥 , its variance will be inversely proportional 

to K. Assuming 𝑥𝑁 is a constant value normalized in the UP 

domain, the resolution of the stochastic number that represent 

𝑥𝑁will be limited by the standard deviation of  𝜇𝑝𝑥 ,𝐾. Or 

considering a particular resolution r, the minimum value of K that 

ensures convergence ofexpected value of 𝑝𝑥  to 𝑥𝑁  is given by 

equation (3).  

K > 22𝑟−2 (5) 

Assuming 𝑝𝑥  as a Bernoulli sequencedefined in equation (1), we 

can estimate their variance about the dynamic range in equation 

(4). 

σ𝜇
2 = 𝑉𝑎𝑟 𝜇𝑝𝑥 ,𝐾|𝑥 𝑡0 =𝑥𝑁

 =
𝑥𝑁 ∙ (1 − 𝑥𝑁)

𝐾
 

 

(6) 

Maximum value for variance will occur in the center of the 

dynamic range. This is the variance in the output of the stochastic 

number generator, in the output of stochastic operators the 

behavior will be different. 

2.2 Stochastic Operators 
Let 𝑝𝑥  and 𝑝𝑦  be binary pulse streams representing 

respectively two values 𝑥 𝑡0 and 𝑦 𝑡0 . A single AND port 

implements the product 𝑧 𝑡0 = 𝑥 𝑡0 ∙ 𝑦 𝑡0 in the UP domain. 

In a bipolar representation (BP or IBP) the product can be 

implemented by an EXOR gate. Also, since for any values of 

𝑥𝑁and 𝑦𝑁, results of 𝑧𝑁 = 𝑥𝑁 + 𝑦𝑁 will generate an output with 

double of the inputs dynamic range, weighted summation is 

performed sampling the stochastic series using a multiplexer and 

an additional variable 𝑝𝑠𝑒𝑙  (E{𝑝𝑠𝑒𝑙 }=0.5). Figure 3 shows the 

main stochastic operators. 

 

 

 

 

 

 

 

 

3. DATA REPRESENTATIONS 
In stochastic representation the length K of the bit-stream  should 

be chosen so as to guarantee the correct encoding of the value 

with a resolution r assuming a fully serial encoding, we will have 

the maximum input frequency restricted by Fs = 1/K.Ts. The high 

length of K is the major problem of stochasticcomputing.Different 

methods have been proposed in order to reduce this latency.In this 

paper we propose a new method of data representation based on 

the subdivision of the dynamic range in Lparts. For comparison 

purposes it is used the parallel codification method. 

Figure 1– Binary number to stochastic bit-stream converter. 
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Figure 3 – Stochastic arithmetic operators for the UP and BP 

stochastic domains. 

(2) 

(3) 



3.1 Parallel Data Representation 
In stochastic parallel data representation each value is represented 

by J parallel stochastic numbers generated with uncorrelated 

random sequences (see figure 4). As the series are uncorrelated 

one only needs to change the S2R circuit to allow the summation 

of parallel pulse streams. This allows a higher resolution and 

requires smaller values of K generating smaller latencies. Thus the 

resolution for parallel stochastic coded (PSC) will thus be defined 

by the product of K and J. It is easy to see that the variance of the 

average of the means of the output bit-streams p1(x) and p2(x) 

will be smaller than the variance of the means of p1(x) and p2(x). 

In section 4 simulation results shows this obviousness. 

 

 

 

 

 

 

 

 

 

 

 
 

3.2 Multilevel Data Representation 
In this work we propose a new method to coding stochastic 

number  based in the subdivision of the dynamic range in L parts, 

each part of the division is separately encoded in a stochastic bit-

stream.The equation below shows the relationship between length 

K of bit stream with the number of subdivisions (L) of the 

dynamic range  andthe number of redundant parallel circuits (J ) .  

𝐾 >
22𝑟−2

𝐽 ∙ 𝐿2
 

In figure 5 a schematic diagram representing the multilevel 

stochastic circuit subdividing the dynamic range into two parts is 

presented. 

 

 

 

 

 

 

 

 

 

 

 

As a convention for multilevel stochastic coding (MSC) each 

pulse stream that encodes part of the dynamic range of variable is 

numbered starting from the most significant section. Thus px1|2 is 

the pulse that encodes the upper mid-section of the variable x, and 

px2|2 its bottom section.  

4. SIMULATION RESULTS 
The quality of the stochastic codification can be measured by their 

variance, through it we determine the length K required to correct 

a stochastic representation with a resolution r. Based on that, we 

simulated the variance for a fixed value of K using theMSC and 

the PSC. In the figure below we can see that increasing the 

number of parallel stochastic circuits the variance slowly 

decreases. On the other hand the multilevel coding variance 

decreases considerably. Figure 6 presents a comparison between 

the two techniques: PSC and MSC. This figure shows that using 

two parallel sections has twice the impact of parallelism without 

range subdivision.  

 

 

 

 

 

 

 

 

 

 

 
 

5. PRACTICAL RESULTS 
To test the key concepts described in this work, we implemented a 

prototype circuit using an Altera® prototyping board with 

EP2C35F672C6FPGA.The circuit implemented performs the 

multiplication of two sine waves with frequencies f1 = 30 kHz  

andf2 = 60 kHz, both signs were converted to PSC (J= 2) and 

MSC (L=2) (see figure 7).The output bit-streams were acquired 

using the NI ELVIS II prototyping board and processed using the 

MATLAB. Figure 7 shows the circuit PSC implemented infpga

 

Figure 7 – PSC implemented on the FPGA prototyping board 

Figure 8 presents the MSC implemented in FPGA. After acquire 

the outputs po1/2 and po2/2, the data were added into MATLAB 

Figure 4 – Parallel Stochastic Circuit (PSC) generating two 

stochastic parallel bit-streams, J=2. 

x 

L 
F 
S
R 

r1 

> 

> 
r2 

p2|1[k] p2|2[k] 

n/2 

n/2 

Figure 5 – Multilevel Stochastic Circuit (MSC) generating two 

stochastic pulse streams with L=2 

Figure 6 – Comparing variance PSC (black) and MSC (gray) 

stochastic circuits. Variance is normalized by 1/K, where K is 

the average estimator depth. SNG using 10 bits LFSR. 

(7) 



in order to eliminate the variance interference caused by an 

stochastic adder circuit implementation. 

 

Figure 8 – Multilevel Stochastic Circuit multiplier 

implemented in FPGA with the subdivision of the range into 

two parts, L=2. 

Figure 9 shows the frequency spectrum of the bit-stream resulting 

from the multiplication of two sine waves, f1 and f2 using MSC 

and PSC techniques.The resulting frequency spectrum of two sine 

waves is the convolution of the frequency spectrum of a sine wave 

f1 and f2. The amplitude of the main frequency peaks of the MSC 

is greater than the PSC, this shows that the resulting spectral 

spread of multiplication was greater in the PSC.Therefore the 

technique MSC obtained a better performance than PSC. 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Frequency Spectrum of the the PSC and the MSC 

multiplier 

Table 2 shows the logical synthesis of circuits implemented, note 

that the hardware costin MSC is smaller than the PSC due to the 

smallerLFSR used in MSC. The complexity of arithmetic circuits 

in MSC increases considerably when L increases, the behavior of 

the variance with the L increasing still needs to be better studied 

in practical circuits. 

Table 2 – Synthesis results for a single stochastic multiplier 

Block Logic cells Register bits 

PSC 318 66 

MSC 301 70 

Sin 30kHz 87 8 

Sin 60kHz 140 8 

 

6. CONCLUSIONS AND FUTURE WORKS 

The results indicate that MSC is a viable alternative to implement 

stochastic arithmetic systems. It can be useful when combined 

with direct redundant parallelism and customized for a particular 

application. 

A future work will be focused on the understanding of the 

variance propagation in different stochastic processing circuits. In 

addition, it will also be compared multilevel and parallel 

stochastic circuits for various failure sceneries and evaluate its 

robustness. 
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