
A framework for assessing the use of SoC SRAMs as
Physical Unclonable Functions

Omitted for blind review

Abstract—this paper discusses the development of a framework
for assessing the use of SoC SRAMs as Physical Unclonable
Functions. We evaluate the idea of considering the power-up
state of a SRAM cell to identify its properties due to physical
mismatches. We also explore the behavior of the memory by
performing several power-on resets and gathering memory
dumps through an asynchronous serial interface. We then
provide a framework to retrieve and process this information
and show a typical case where the startup stage shows itself to be
a strong candidate to generate a Physical Unclonable Function
using static memory cells on an off-the-shelf circuit.

Index Terms— Physical Unclonable Functions, SRAM
characterization and evaluation framework.

I. INTRODUCTION
Physical Unclonable Functions (PUFs) are functions that

provide a response based on a challenge posed to it and the
physical structure of the circuit used to implement it. The goal
is to achieve a function that is easy to evaluate but hard to
predict before presenting the challenges to it. Among others, it
has been reported applications of PUFS on device
identification and authentication, binding software to hardware
platforms and secure data storage [1].

There is still not a established set of properties a PUF must
preset to be useful in security protocols applications but two
are considered essential: 1) the output of one PUF instance
must be impossible to predict based on the challenge-response
pairs (CRP) of another instance and 2) each instance of a PUF
must always provide the same output [2].

Some architectures have been proposed to implement such
kind of function, many based on non-electronic devices. On the
other side, we believe that for massive adoption of PUFs, they
must be fully integrated with other electronic circuits to
compose a System on Chip (SoC) solution with minimum or
no modification on the fabrication process. One of the most
promising solution is to implement the PUFs using SRAM
memory cells present on modern chips [1].

This paper presents a framework developed for
characterizing SRAM based PUFs. The information obtained
with this framework will be later used to implement error
correction codes for SRAM based PUFs and to help design
SRAM cells better suited to be used as PUFs.

II. SRAM BASED PUF
A CMOS SRAM cell is a six transistor (6T) device [3] as

shown in Fig. 1 and is formed of two cross-coupled inverters

and two MOS switches to implement access to the cell through
the transistors AXL and AXR. It has been discussed in the
literature that variations in the process of fabrication of cells
using CMOS technology would generate a random behavior
during power-up stages. There is, though, a new trend looking
forward to demonstrate whether this behavior would be
completely random or if some cells would tend to start in a
predefined state. [3].

Fig. 1. Six transistor SRAM cell [3].

The startup scenario of digital memories was for a long
time thought to be completely random. If the element is
brought into an unstable state, it is not clear what will happen.
But that does not mean that the startup state of a memory
would be completely random. It could start varying its values
or it could go back to a stable state. What we intend to show
here is that some cells heavily prefer certain stable states.
Moreover, this can often not be explained by the logic
implementation of the cell, but it turns out that internal
physical mismatch, e.g. caused by manufacturing variation,
plays a role in this [2].

In this way, right after the memory power-up, it is hard to
predict the state of the memory, i.e., the memory will present
as a table filled with unpredictable data. If this data is
uncorrelated between different chips and is the same all the
time the SRAM is powered-up, the device may therefore be
used as a PUF. In this case, the challenges would be the
addresses of the memory and the responses would be the
unpredictable content of the SRAM memory after the power-
up.

III. SRAM PUF CHARACTERIZATION
In order to use SRAM memory cells as PUFs, one must

confirm that the memories present the required properties. We
chose to use the SRAM present on a 16-bit Texas Instruments
MSP430F2013 microcontroller (MCU) instead of the ones

present in a FPGA because, when using SoCs, the application
designer would not have total control over the hardware
functionality but therefore use standardized interfaces to access
the memory. Besides that if we could use the SRAM on a
MCU to implement a PUF we would have circuits
implementing the PUF and their protocols in the same devices
where their applications would be running. This MCU have a
total of 128 Byte SRAM, sufficient to develop the framework
that will be later used to characterize more complex devices.

To be used as a PUF, one must characterize the SRAM
memory through repeated measurements of the same chip that
we define as intra-class behavior. Hamming distance is the
preferred metric to compare different circuits. The
measurement of intra-class Hamming distance gives us an
estimative of noise on the circuit and should be as small as
possible. Such small errors could be later corrected by error
correcting algorithms. [4]

It is important to also characterize the circuit behavior
through measurements of different chips, defined here as inter-
class behavior. The measurement of inter-class Hamming
distance gives a clue on how predictable is the output of one
PUF instance based on the information of another PUF
instance. This problem will be tackled in a later work.

The framework proposed in this work is composed by a
testbench and analysis software running on a PC connected to
the MCU by a serial interface. This software runs the
experiments as described in Section V and performs the
analysis described in Section VI later on.

IV. ASYNCHRONOUS SERIAL COMMUNICATION
The first issue we had to deal with was the absence of a

UART interface in the microcontroller. We needed to read
information from the memory after the resetting the chip so for
testing purposes it was implemented a simple asynchronous
serial protocol to receive data from the microcontroller to C
ANSI software written specially for this purpose. In Fig. 2 it is
shown a timing diagram of the implementation of the protocol.

Fig. 2. Asynchronous Serial Protocol timing diagram

The idea here is to use three pins to implement the
communication. The first one is the Data line which represents
where the bit from the memory would be sent to. The Data
Available pin is set after the data bit is written in the line, to
inform the computer that there is data in the line to be read.
The microcontroller enters then in a loop waiting for the Data
Read pin to be set. Whenever this pin is set to high the MCU
is supposed to interpret that the computer received the bit.
Then, it drops the Data Available pin and enters in another
loop waiting for the Data Read pin to be dropped from the

computer. Whenever the MCU senses the Data Read pin has
been dropped it finishes the transmission of the Data bit and
the process starts all over again for the next bit to be sent. We
use pins of a RS232 serial port on a PC to communicate with
the microcontroller. The communication is done by using the
pins CTS connected to P1.0, DSR to P1.1, RTS to P1.2, DTR
to Vdd.

V. GATHERING MEMORY DUMPS
As mentioned before the purpose in studying PUF

applications lies in the fact of defining a set that includes a
number of challenge response pairs defined as CRP database.
The idea is to generate a process that can be reproduced during
usage to apply a challenge to the device and compare the result
with a key or some sort of database and then evaluate whether
the device is valid or not.

Using the protocol mentioned in the previous section we
were capable of reading dumps automatically. We developed
software that resets the microcontroller after waiting 2s in
order to demonstrate if the number of resets performed in a
single SRAM would reveal similar characteristics so that we
could generate the CRP database.

The process starts by defining a macro
MAX_REPETITIONS that represents how many times the
microcontroller unit should be reset, in our case a hundred, and
a macro called MEM_SIZE which in our case is 128 that
represents the number of bytes to be read from the memory at
once. The memory in the microcontroller being used starts at
the address 0x200h and goes all the way to 0x27Fh.

The framework starts powering up the MSP board by
setting the DTR pin to 1. Afterwards it enters in a loop waiting
for the Data Available (Data-AV) pin to be set, which would
mean that the board has fetched a byte from memory and
intends to send the first bit through the serial line. Then, the
data line is read and the Data Read (Data-Read) pin is set to 1,
which would mean that the bit has been read from the line.
Now the system waits for the Data-AV pin to be dropped from
the MCU, meaning that the unit understood that the computer
read the bit. At this point the software drops the Data-Read pin
(RTS = 0) and increment BitCount. If BitCount equals to 7 it
means that one byte has been fetched and the microcontroller
can start reading another byte from memory. Otherwise it
returns to the Wait stage to get the next bit. After repeating the
process until all accessible memory has been read the
framework decides if it is time to stop fetching data from the
microcontroller or if another reset needs to be performed. This
workflow can be seen graphically in Fig. 3.

Power-up
DTR = 1

Wait

Read Bit
CTS

Drop Read Bit
RTS = 0

BitCount++

BitCount = 0
ByteCount++

Power-down
DTR = 0

Exit

Da
ta

AV
 =

 0

DataAV = 1

Set Data Read
RTS = 1

DataAV = 0Da
ta

AV
 =

 1

Bi
tC

ou
nt

 !=
 7

BitCount == 7

By
te

Co
un

t
!=

 M
EM

_S
IZ

E

N++

N
!=

 M
AX

_R
EP

ET
IT

IO
NS

N = = MAX_REPETITIONS

Fig. 3. Framework workflow

VI. PROCESSING MEMORY DUMPS
For the chosen MCU we gathered N memory dumps spaced

by a time period of two seconds. This period would be
sufficient to get rid of residual charge stored in the SRAM
cells. The software then compares all possible pairs of memory
dumps by creating exclusive-or (XOR) masks that contains
zeros at the positions where the bits have not changed over two
experiments and ones at the positions where bits have changed
over different experiments. Counting the number of ones in
each mask gives us the Hamming distance associated with each
pair of measurements. By summing (OR) all the masks
generated by the end of this process in a global mask, we could
define an error rate as being the total number of bits that
changed over the experiments at least once over the total
number of bits available in the SRAM memory.

Table I shows an example of what the software does and
the masks it produces by comparing three memory dumps. As
the last two bits have changed over the measurements, the
global mask will reflect this behavior by setting the last two
bits and we would get a 25% error rate in this example.

TABLE I. MEMORY DUMPS COMPARISON – EXAMPLE FOR ONE BYTE

Dump number Memory[0x200h]

1 0xFC – 1111 1100

2 0xFE – 1111 1110

3 0xFD – 1111 1101

MASK (1 – 2) 0x02 – 0000 0010 (HDintra = 1)

MASK (1 – 3) 0x01 – 0000 0001 (HDintra = 1)

MASK (2 – 3) 0x03 – 0000 0011 (HDintra = 2)

Global MASK 0x03 – 0000 0011 (HDintra = 2)

We also analyze the histogram of all intra-class Hamming
distances calculated. This gives us a measurement on how
much noise there is on the circuit (average) and how it is
distributed over different experiments (standard deviation).

VII. FRAMEWORK EVALUATION
We present here a typical case we get by using the

proposed framework. We performed a set of 100 memory
dumps on a 3.3V power supply and room temperature. After
evaluating the Hamming distances and plotting the histogram
of them, we realize that the output mask reveals that only 59
bits out of 1024 (128B) have changed at least once during the
process of resetting the circuit which results in 5.76% error rate
in this typical case.

In fact as presented in Fig. 4 the error rate calculated by
computing the logical sum of the individual masks represents
the worst case scenario, because all bars in this histogram are
placed under the value 0.03 which would mean 3% of variation
in each comparison of two masks individually, which leads to
the fact that the trade-off of increasing the computational effort
to calculate all the possibilities has provided a better
visualization of the results in the form of the histogram.

Fig. 4. Intra-chip Hamming distance histogram for Vdd = 3.3V and room temperature.

VIII. CONCLUSION
 This work presented a framework to characterize

SRAM memory PUFs. It allows one to gain knowledge on the
intra-class behavior of SRAM circuits by getting several
memory dumps of a chosen microcontroller and analyzing it
under different temperatures and power supply voltages. We
show a typical case using Texas Instrument MSP430F2013
microcontroller that presented a 5.76% error rate under typical
operating conditions. Future works would include the inter-
class characterization of the SRAM circuits and the proposal of
error correction codes to deal with the noise presented by the
circuits.

ACKNOWLEDGMENT
The authors would like to acknowledge Intel Labs

University Research Office for financial support.

REFERENCES

[1] S. Katzenbeisser, U. Kocabaş, V. Rožić, A. Sadeghi, I.
Verbauwhede, C. Wachsmann. PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Functions (PUFs)
Cast in Silicon. 	

[2] R. Maes, I. Verbauwhede, “Physically Unclonable Functions: a
Study on the State of the Art and Future Research Directions”

[3] Guajardo, J., Kumar, S.S., Schrijen, G. J., Tuyls, P.: FPGA
Intrinsic PUFs and their use for IP Protection. In: Cryptographic
Hardware and Embedded Systems Workshop, LNCS, vol. 4727,
pp. 63 (80 (2007)), 	

[4] Christoph Bohm, Maximilian Hofer, Wolfgang Pribyl. A
Microcontroller SRAM-PUF. Institute of Electronics. Graz
University of Technology	

