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Abstract — In logic synthesis, the technology mapping process 

can be a very time consuming task when fitting cells into a target 

library. This work exploits the representation of Boolean 

functions through bipartite graph to propose a fast and quite 

effective way to calculate their P-matching equivalence. The 

proposed method applies reduction rules simultaneously over 

two graphs in order to verify the isomorphism property that is 

the condition for P-matching. A fast algorithm is developed 

based on such strategy, and experimental results have 

demonstrated that this method runs in linear time in most cases.  

I. INTRODUCTION 

In integrated circuit (IC) design methodology, the standard 
cell flow is still playing a major role [1]. This flow is divided 
in several steps or tasks, in which the logic synthesis uses P-
matching to find out equivalent cells in a target library to map 
part of the functionality of the circuit. This problem, named 
Boolean P-matching, determines when two functions are 
equivalent under the permutation of its variables [2]. As a 
result, this task has to be executed as fast as possible being that 
such speed is intrinsically associated to the representation form 
applied in process. In the way to speed up this process, several 
methods have been proposed in the literature to solve it [2][3]. 
Related to this issue, the data structure adopted is a big concern 
to guarantee short execution time and scalability. In some 
cases, structures based on elementary representation of truth-
table are applied. This elementary representation brings all 
limitations of truth-table such as the practical number of inputs 
limit inherent to this structure. Therefore, a good model to 
represent a function in Boolean matching context is needed.  

Boolean functions have several forms of representation. 
These forms are usually centralized to take the benefit of some 
function properties. For instance, truth-table representation is 
addressed for small number of inputs (variables), so being a 
good way to verify all input combinations. On the other hand, 
binary decision diagram (BDD) data structure is useful in 
cofactor exploitation point-of-view [4]. Graph representations 
can be exploited to describe the function in the structural 
domain. Moreover, in some cases, these graphs are used to 
minimize the expression form of Boolean function [5]. In other 
cases, they are used to map logic gates into standard cell design 
flow [6]. Indeed, these forms of representation have been 
developed for specific context in order to explore the facilities 
provided by each data structure.  

This paper proposes a new way to generate a graph-based 
model for describing Boolean function, and it is exploited in a 
novel algorithm to solve the P-matching favouring the Boolean 
matching context. As the only essential information for P-
matching of function from truth-table representation is 
maintained, the bipartite graph representation exploited herein 
is naturally more compact. The basic idea of our approach is to 
generate a bipartite graph with minterms and variables, 
described according to the function behavior. With this graph 
scheme, we represent the functions involved in the P-matching 
verification, in their graph form. Such verification is based on 
the application of rules for reducing them simultaneously. If 
each reduction step presents the same effect in each graph until 
the end (i.e., complete reduction to nothing), one can that they 
are isomorphic graphs and, consequently, P-equivalent 
Boolean functions. As such reduction occurs simultaneously in 
both graphs, a structural check can be performed over their 
topologies. This reduction algorithm is very promising 
because, in most of cases, the matching is done in linear time. 
In other cases, the computation time can be more than 
exponential, but it is a property of any NP-complete problem 
such as Boolean matching [5]. 

The structure of this paper is the following. Section II 
presents a brief technical background review about the main 
concepts for a better understanding of this approach. Section 
III describes the minterm-variable bipartite graph used herein. 
Section IV discusses the proposed algorithm, how to generate a 
minterm-variable graph for different Boolean functions, how to 
reduce such graph in comparison to others, and some 
examples. Section V provides some results in the generation of 
permutation classes, as well as the analysis of the algorithm 
complexity. Section VI outlines the conclusions. 

II. TECHNICAL BACKGROUND 

A. Graph Isomorphism 

If two graphs, G1 and G2, has a function f: G1 → G2 such 
that for every edge in G1 with nodes u and v there is an edge in 
G2 with nodes f(u) and f(v), then they are isomorphic graphs. 

For instance, the bijection functions illustrated in Fig. 1 are 
P-equivalent according to the following: 

 f(A) = B;  f(C) = C;  f(B)  = A;  f(D)  = D. 



 
Figure 1 - Example of two isomorphic graphs. 

 

B. P-Matching 

P-matching is the operation over two functions, f1 and f2, 
that determines if there is a permutation of variables in f1 such 
that this function turns into f2. [5]. If a P-matching exists 
between f1 and f2, the function f1 is called P-equivalent with f2.  

For instance, the functions f1=0x119f and f2=0x03d7 are P-
equivalent. The expressions associated to both can be the 
following: 

f1 = ((!c * !d) + (!a * (!b + (c * d)))) 

f2 = ((!b * !c) + (!a * (!d + (b * c)))) 

Notice that : 

• a in f1 turns on a in f2; 

• b in f1 turns on d in f2; 

• c in f1 turns on b in f2; 

• d in f1 turns on c in f2. 

C. Graph Adjacency Matrix 

Given a graph G (V,E), where V is the set of nodes in 
graph, and E is the set of edges in G: 

Adjacency matrix is the n x n matrix, where n is the 
cardinality of set V, denoted by |V|, where each element aij is 1 
if an edge exists between i and j, and 0 otherwise. An 
adjacency matrix of two isomorphic graphs is illustrated in 
Table I. 

 

Table I - Example of two isomorphic graphs. 

 a b c d 

a 0 1 1 0 

b 1 0 0 1 

c 1 0 0 1 

d 0 1 1 0 
 

III. MINTERM-VARIABLE GRAPH 

A Boolean function with n variables and one output is 

defined as f: B
n→ B, where B = {0,1}.  

Support of a Boolean function with n variables is a set A = 
{a1, a2, a3,… an} of its variables. 

Minterms of Boolean function is the set: 

B
n
= { (m1, m2,…, mn)1, (m1, m2,…, mn)2,. (m1, m2,…, mn)2n} 

where mi belongs to B. 

The graph G (V,E), where V is the set of nodes in graph and 
E is the set of edges in graph associated with a Boolean 
function, is defined as follows: 

V = {A union B
n
} 

and 

E = {e(ai, (m1, m2,…, mn)k) / ai belongs to A and (m1, m2,…, 

mn)k belong to B
n
 and f((m1, m2,…, mn)k)= 1 and mi =1} 

where i ≤ n and k ≤ 2n, and e(i,j) is an edge between nodes i 

and j. This graph is named ‘minterm-variable graph’.  

The graph construction process can be illustrated with the 
following example. Suppose that we have the function f=0x27 
represented through the truth-table in Table II. 

Table II – Truth-table for f = 0x27. 

 X0 X1 X2 f 
0: 0 0 0 1 
1: 0 0 1 1 
2: 0 1 0 1 
3: 0 1 1 0 
4: 1 0 0 0 
5: 1 0 1 1 
6: 1 1 0 0 
7: 1 1 1 0 

 
The lines that turn the function to ‘0’ are not a concern, and 

can be discarded from the truth-table, so generating a reduced 
truth-table as shown in Table III.  

Table III – Truth-table for f = 0x27 

(the 1 induces the edge 2 to X1). 

 X0 X1 X2 f 

0: 0 0 0 1 
1: 0 0 1 1 
2: 0 1 0 1 
3: 1 0 1 1 

 
Such reduced truth-table seems like an adjacency matrix of 

graph. Every ‘1’ value induces an edge between minterm and 
variable in the same line and column of 1 value. If we repeat 
this process for all ‘1’ in truth-table, we obtain the graph show 
in Fig. 2. 

This generated graph is useful to calculate P-matching 
because it structure is unique for all functions P-equivalent. 
However, a general graph can be drawn and labeled in several 
ways maintained its structure. Graphs in this case are named 
isomorphic because they have a bijection in their structure. In 
computer science, an efficient algorithm for graph 



isomorphism is an open problem, and no proof of hardness of 
its problem (NP-completeness) can be encountered. Therefore, 
there is a room for investigation in this subject.  

 
 

Figure 2 - Graph associated to the function in Table III. 

IV. PROPOSED P-MATCHING METHOD 

The proposed P-matching algorithm uses a minterm-
variable graph structure to represent a Boolean function, and 
the fact that the nodes of this graph can be divided into two 
subsets: the ‘tentacle’ subset and the ‘cycle’ subset. 

A. Tentacle Graph Subset 

Every node with degree equal to one and all reachable nodes 

that have degree equal to two is a node in a ‘tentacle’ graph 

pattern. Fig. 3 illustrates a graph with a ‘tentacle’ composed by 

the nodes in white color. The black nodes belong to another 

graph subset, defined in the next section. 

 

 
 

Figure 3 - Example of graph with a ‘tentacle’ and a ‘cycle’. 

B. Cycle Graph Subset 

Every node that does not belong to a ‘tentacle’ is place on a 

‘cycle’. For instance, this kind of node is represented by the 

nodes in black in Fig. 3. 

C. Graph Code 

Every node in a minterm-variable graph has a set of integer 
numbers corresponding to the code that represents the 
information of its neighbors. Here, we have divided the set of 
nodes into two subsets of type of code: 

• Nodes with degree lower than 2 – when a node is 

simply removed, it sums the removed node code with 

the top of stack of adjcacents nodes. 

• Nodes with degree greater than 2 – when a node is 

removed, it inserts its code on the top of the stack of 

its adjacent node, growing in one level the stack size. 

D. Equivalence Check 

Given two Boolean functions in their minterm-variable 
graph representation, a reduction of these graphs can be 
performed as follows: 

1) Generate the graph associated to these functions, 

G1and G2. 

2) Detect the tentacles in G1 and G2, and check if both has 

the same number of tentacles. 

3) If there is a tentacle: 

• Remove the variables nodes of tentacle that have 

degree one in both graphs; check if the number of 

removed nodes is the same. 

• Remove the minterms nodes of tentacle that have 

degree one in both graphs; check if the number of 

removed nodes is the same. 

4) If there is not a tentacle: 

• Chose a node with unique code to remove in both 

graphs, and then remove it.  

• If there is not this unique node, choose one node in 

G1 and test its deletion with all nodes tied with this 

in G2. 

5) In each deletion, propagates a code graph of node 

removed to the adjacent node. 

6) Check if the removed nodes are equivalent in code and 

degree. 

7) Repeat until the graph is empty or no equivalent 

deletion was encountered.  

If both graphs are empty in final step, the functions are P-

equivalent. Otherwise, they are not P-equivalent.  

In the way to better explain how this algorithm works, two 

examples are presented: 

Example 1: The function f=0x68 and f=0x68, shown in Fig. 

4, are P-equivalent because is the same function. If every node 

ties in its code, then we get all tied nodes in both graph, and 

put them on a set T1 associated with one graph and T2 

associated with other graph. Then, extracting an element t of 

T1 and for all element e in T2 creates a pair (t,e), removing 

this pair in both graphs, and repeating the algorithm with the 

rest of the graph. If some pair returns true in its reduction, 

there is a matching in these graphs. 

 
 

Figure 4 - Graph reduction: lower case. 

 
In this example, we generate the set of tied nodes G1 = 

{x1,x2,x0,3,6,5} and G2 = {x1,x2,x0,3,6,5}. And we try to 
match a node in G1 to a node in G2. Maintaining the node 
‘x1’, the possibilities are (x1,x1), (x1,x2), (x1,x0). Since 
variable node only match with variable node, x1 should have a 
variable that match with itself. A backtracking is performed in 



these cases in order to find at least one pair that matches. 
Notice that to know if a pair matches, it is needed to run the 
algorithm until the end. Therefore, if one pair matches, other 
pairs do not need to be tested.  

Example 2: Considering the function f=0x81 with f=0x86, 

illustrated in Fig. 5. Such functions do not match because their 

graphs are not isomorphic. These functions do not have cycle. 

It is the best case of matching because the ‘tentacles’ are 

removed very fast in linear time in number of nodes.  

 

 
 

Figure 5 - Graph reduction: best case. 

V. EXPERIMENTAL RESULTS 

The algorithm has been validated with the generation of all 
P-class functions with 2-, 3- and 4-input [5], in order to verify 
its correctness and efficiency. 

In the way to reach more than 4-input functions, 
experiments with 5-input NPN class functions have been 
carried out, and every function was compared against to all 
other functions in the same class. Although 5-input NPN class 
set has 616,125 functions, this test spent around two days in 
computation time and no error has been detected. The results 
are show in Table IV. This table demonstrates that only few 
functions in the entire set were actually computation time 
consuming during the evaluation. Other random tests were 
performed considering up to 19-input functions. An 
investigation of which functions represent the bottlenecks for 
this approach was also made 

 
Table IV – Function profile of linear and non-linear sets. 

Set of functions 

Number of variables 

Up to #vars Total 
Non 

Linear 
% in total 

All 2 input 2 16 0 0 

All 3 input 3 256 44 17.18 

All 4 input 4 65536 9376 14.30 

5 NPN 5 616125 42936 6.96 

 
The results shown in Table IV are very promising. The 

larger number of functions presents linear computation time of 
the Boolean matching. Less than 20% of cases are actually 
time consuming using the proposed procedure.  

In terms of algorithm complexity analysis, the following 
considerations can be done. Assuming a graph G(V,E), it is 
known that V can be subdivided in two subsets: x in V that is 
on a ‘tentacle’, and y in V that is on a ‘cycle’. We named the 
nodes in ‘tentacle’ as T, and C to nodes in cycles, since C is 
disjoint of T. The graph G can have several ‘tentacles’ and 
‘cycles’. Every ‘tentacle’ in T is reduced in time proportional 
to its number of nodes. In lower cases, it can be the entire V. 
Then, in these cases, we have O(|V|) complexity, where |V| 
represents the cardinality of set V. 

In the case of ‘cycles’, the lower cases to number of nodes 
in C is |C|=|V|, and an exhaustive search is done. This 
exhaustive search uses at maximum O(|V|) steps. 

Therefore, a typical graph has a combination of these cases, 
but if it is a ‘tentacle’ or a ‘cycle’, the algorithm resolves the 
match in linear time O(|V|). In the case of combination of both, 
and in presence of so many ties, the natural recursion of this 
method uses O(|k1|*|k2|…*|kn|), where ∑ki = |V|, n → 0. It says 
that this approach runs in super-exponential time in lower 
cases, as every NP-complete problem like P-matching. 
However, as show in Table IV, these cases are very few from 
the universe of Boolean functions up to 5-inputs. 

VI. CONCLUSIONS 

This work proposes a new way to verify P-matching. This 
approach uses a graph representation for Boolean functions. It 
divides the universe of functions that have fast P-matching and 
the ones that are computation time consuming in this process. 
In the case of few tie in the searching of irredundant nodes in 
the graph representation, this runs in linear time. In the case of 
many ties, it follows the theoretical complexity of the problem, 
being super-exponential, but just for few cases in such 
universe. 
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