
Fast and Effective P-Matching Method Based on

Bipartite Graph

Anderson Santos da Silva, André Reis, Renato Ribas

Institute of Informatics, Federal University of Rio Grande do Sul

Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil

{assilva,rpribas,andreis}@inf.ufrgs.br

Abstract — In logic synthesis, the technology mapping process

can be a very time consuming task when fitting cells into a target

library. This work exploits the representation of Boolean

functions through bipartite graph to propose a fast and quite

effective way to calculate their P-matching equivalence. The

proposed method applies reduction rules simultaneously over

two graphs in order to verify the isomorphism property that is

the condition for P-matching. A fast algorithm is developed

based on such strategy, and experimental results have

demonstrated that this method runs in linear time in most cases.

I. INTRODUCTION

In integrated circuit (IC) design methodology, the standard
cell flow is still playing a major role [1]. This flow is divided
in several steps or tasks, in which the logic synthesis uses P-
matching to find out equivalent cells in a target library to map
part of the functionality of the circuit. This problem, named
Boolean P-matching, determines when two functions are
equivalent under the permutation of its variables [2]. As a
result, this task has to be executed as fast as possible being that
such speed is intrinsically associated to the representation form
applied in process. In the way to speed up this process, several
methods have been proposed in the literature to solve it [2][3].
Related to this issue, the data structure adopted is a big concern
to guarantee short execution time and scalability. In some
cases, structures based on elementary representation of truth-
table are applied. This elementary representation brings all
limitations of truth-table such as the practical number of inputs
limit inherent to this structure. Therefore, a good model to
represent a function in Boolean matching context is needed.

Boolean functions have several forms of representation.
These forms are usually centralized to take the benefit of some
function properties. For instance, truth-table representation is
addressed for small number of inputs (variables), so being a
good way to verify all input combinations. On the other hand,
binary decision diagram (BDD) data structure is useful in
cofactor exploitation point-of-view [4]. Graph representations
can be exploited to describe the function in the structural
domain. Moreover, in some cases, these graphs are used to
minimize the expression form of Boolean function [5]. In other
cases, they are used to map logic gates into standard cell design
flow [6]. Indeed, these forms of representation have been
developed for specific context in order to explore the facilities
provided by each data structure.

This paper proposes a new way to generate a graph-based
model for describing Boolean function, and it is exploited in a
novel algorithm to solve the P-matching favouring the Boolean
matching context. As the only essential information for P-
matching of function from truth-table representation is
maintained, the bipartite graph representation exploited herein
is naturally more compact. The basic idea of our approach is to
generate a bipartite graph with minterms and variables,
described according to the function behavior. With this graph
scheme, we represent the functions involved in the P-matching
verification, in their graph form. Such verification is based on
the application of rules for reducing them simultaneously. If
each reduction step presents the same effect in each graph until
the end (i.e., complete reduction to nothing), one can that they
are isomorphic graphs and, consequently, P-equivalent
Boolean functions. As such reduction occurs simultaneously in
both graphs, a structural check can be performed over their
topologies. This reduction algorithm is very promising
because, in most of cases, the matching is done in linear time.
In other cases, the computation time can be more than
exponential, but it is a property of any NP-complete problem
such as Boolean matching [5].

The structure of this paper is the following. Section II
presents a brief technical background review about the main
concepts for a better understanding of this approach. Section
III describes the minterm-variable bipartite graph used herein.
Section IV discusses the proposed algorithm, how to generate a
minterm-variable graph for different Boolean functions, how to
reduce such graph in comparison to others, and some
examples. Section V provides some results in the generation of
permutation classes, as well as the analysis of the algorithm
complexity. Section VI outlines the conclusions.

II. TECHNICAL BACKGROUND

A. Graph Isomorphism

If two graphs, G1 and G2, has a function f: G1 → G2 such
that for every edge in G1 with nodes u and v there is an edge in
G2 with nodes f(u) and f(v), then they are isomorphic graphs.

For instance, the bijection functions illustrated in Fig. 1 are
P-equivalent according to the following:

 f(A) = B; f(C) = C; f(B) = A; f(D) = D.

Figure 1 - Example of two isomorphic graphs.

B. P-Matching

P-matching is the operation over two functions, f1 and f2,
that determines if there is a permutation of variables in f1 such
that this function turns into f2. [5]. If a P-matching exists
between f1 and f2, the function f1 is called P-equivalent with f2.

For instance, the functions f1=0x119f and f2=0x03d7 are P-
equivalent. The expressions associated to both can be the
following:

f1 = ((!c * !d) + (!a * (!b + (c * d))))

f2 = ((!b * !c) + (!a * (!d + (b * c))))

Notice that :

• a in f1 turns on a in f2;

• b in f1 turns on d in f2;

• c in f1 turns on b in f2;

• d in f1 turns on c in f2.

C. Graph Adjacency Matrix

Given a graph G (V,E), where V is the set of nodes in
graph, and E is the set of edges in G:

Adjacency matrix is the n x n matrix, where n is the
cardinality of set V, denoted by |V|, where each element aij is 1
if an edge exists between i and j, and 0 otherwise. An
adjacency matrix of two isomorphic graphs is illustrated in
Table I.

Table I - Example of two isomorphic graphs.

 a b c d

a 0 1 1 0

b 1 0 0 1

c 1 0 0 1

d 0 1 1 0

III. MINTERM-VARIABLE GRAPH

A Boolean function with n variables and one output is

defined as f: B
n→ B, where B = {0,1}.

Support of a Boolean function with n variables is a set A =
{a1, a2, a3,… an} of its variables.

Minterms of Boolean function is the set:

B
n
= { (m1, m2,…, mn)1, (m1, m2,…, mn)2,. (m1, m2,…, mn)2n}

where mi belongs to B.

The graph G (V,E), where V is the set of nodes in graph and
E is the set of edges in graph associated with a Boolean
function, is defined as follows:

V = {A union B
n
}

and

E = {e(ai, (m1, m2,…, mn)k) / ai belongs to A and (m1, m2,…,

mn)k belong to B
n
 and f((m1, m2,…, mn)k)= 1 and mi =1}

where i ≤ n and k ≤ 2n, and e(i,j) is an edge between nodes i

and j. This graph is named ‘minterm-variable graph’.

The graph construction process can be illustrated with the
following example. Suppose that we have the function f=0x27
represented through the truth-table in Table II.

Table II – Truth-table for f = 0x27.

 X0 X1 X2 f
0: 0 0 0 1
1: 0 0 1 1
2: 0 1 0 1
3: 0 1 1 0
4: 1 0 0 0
5: 1 0 1 1
6: 1 1 0 0
7: 1 1 1 0

The lines that turn the function to ‘0’ are not a concern, and

can be discarded from the truth-table, so generating a reduced
truth-table as shown in Table III.

Table III – Truth-table for f = 0x27

(the 1 induces the edge 2 to X1).

 X0 X1 X2 f

0: 0 0 0 1
1: 0 0 1 1
2: 0 1 0 1
3: 1 0 1 1

Such reduced truth-table seems like an adjacency matrix of

graph. Every ‘1’ value induces an edge between minterm and
variable in the same line and column of 1 value. If we repeat
this process for all ‘1’ in truth-table, we obtain the graph show
in Fig. 2.

This generated graph is useful to calculate P-matching
because it structure is unique for all functions P-equivalent.
However, a general graph can be drawn and labeled in several
ways maintained its structure. Graphs in this case are named
isomorphic because they have a bijection in their structure. In
computer science, an efficient algorithm for graph

isomorphism is an open problem, and no proof of hardness of
its problem (NP-completeness) can be encountered. Therefore,
there is a room for investigation in this subject.

Figure 2 - Graph associated to the function in Table III.

IV. PROPOSED P-MATCHING METHOD

The proposed P-matching algorithm uses a minterm-
variable graph structure to represent a Boolean function, and
the fact that the nodes of this graph can be divided into two
subsets: the ‘tentacle’ subset and the ‘cycle’ subset.

A. Tentacle Graph Subset

Every node with degree equal to one and all reachable nodes

that have degree equal to two is a node in a ‘tentacle’ graph

pattern. Fig. 3 illustrates a graph with a ‘tentacle’ composed by

the nodes in white color. The black nodes belong to another

graph subset, defined in the next section.

Figure 3 - Example of graph with a ‘tentacle’ and a ‘cycle’.

B. Cycle Graph Subset

Every node that does not belong to a ‘tentacle’ is place on a

‘cycle’. For instance, this kind of node is represented by the

nodes in black in Fig. 3.

C. Graph Code

Every node in a minterm-variable graph has a set of integer
numbers corresponding to the code that represents the
information of its neighbors. Here, we have divided the set of
nodes into two subsets of type of code:

• Nodes with degree lower than 2 – when a node is

simply removed, it sums the removed node code with

the top of stack of adjcacents nodes.

• Nodes with degree greater than 2 – when a node is

removed, it inserts its code on the top of the stack of

its adjacent node, growing in one level the stack size.

D. Equivalence Check

Given two Boolean functions in their minterm-variable
graph representation, a reduction of these graphs can be
performed as follows:

1) Generate the graph associated to these functions,

G1and G2.

2) Detect the tentacles in G1 and G2, and check if both has

the same number of tentacles.

3) If there is a tentacle:

• Remove the variables nodes of tentacle that have

degree one in both graphs; check if the number of

removed nodes is the same.

• Remove the minterms nodes of tentacle that have

degree one in both graphs; check if the number of

removed nodes is the same.

4) If there is not a tentacle:

• Chose a node with unique code to remove in both

graphs, and then remove it.

• If there is not this unique node, choose one node in

G1 and test its deletion with all nodes tied with this

in G2.

5) In each deletion, propagates a code graph of node

removed to the adjacent node.

6) Check if the removed nodes are equivalent in code and

degree.

7) Repeat until the graph is empty or no equivalent

deletion was encountered.

If both graphs are empty in final step, the functions are P-

equivalent. Otherwise, they are not P-equivalent.

In the way to better explain how this algorithm works, two

examples are presented:

Example 1: The function f=0x68 and f=0x68, shown in Fig.

4, are P-equivalent because is the same function. If every node

ties in its code, then we get all tied nodes in both graph, and

put them on a set T1 associated with one graph and T2

associated with other graph. Then, extracting an element t of

T1 and for all element e in T2 creates a pair (t,e), removing

this pair in both graphs, and repeating the algorithm with the

rest of the graph. If some pair returns true in its reduction,

there is a matching in these graphs.

Figure 4 - Graph reduction: lower case.

In this example, we generate the set of tied nodes G1 =

{x1,x2,x0,3,6,5} and G2 = {x1,x2,x0,3,6,5}. And we try to
match a node in G1 to a node in G2. Maintaining the node
‘x1’, the possibilities are (x1,x1), (x1,x2), (x1,x0). Since
variable node only match with variable node, x1 should have a
variable that match with itself. A backtracking is performed in

these cases in order to find at least one pair that matches.
Notice that to know if a pair matches, it is needed to run the
algorithm until the end. Therefore, if one pair matches, other
pairs do not need to be tested.

Example 2: Considering the function f=0x81 with f=0x86,

illustrated in Fig. 5. Such functions do not match because their

graphs are not isomorphic. These functions do not have cycle.

It is the best case of matching because the ‘tentacles’ are

removed very fast in linear time in number of nodes.

Figure 5 - Graph reduction: best case.

V. EXPERIMENTAL RESULTS

The algorithm has been validated with the generation of all
P-class functions with 2-, 3- and 4-input [5], in order to verify
its correctness and efficiency.

In the way to reach more than 4-input functions,
experiments with 5-input NPN class functions have been
carried out, and every function was compared against to all
other functions in the same class. Although 5-input NPN class
set has 616,125 functions, this test spent around two days in
computation time and no error has been detected. The results
are show in Table IV. This table demonstrates that only few
functions in the entire set were actually computation time
consuming during the evaluation. Other random tests were
performed considering up to 19-input functions. An
investigation of which functions represent the bottlenecks for
this approach was also made

Table IV – Function profile of linear and non-linear sets.

Set of functions

Number of variables

Up to #vars Total
Non

Linear
% in total

All 2 input 2 16 0 0

All 3 input 3 256 44 17.18

All 4 input 4 65536 9376 14.30

5 NPN 5 616125 42936 6.96

The results shown in Table IV are very promising. The

larger number of functions presents linear computation time of
the Boolean matching. Less than 20% of cases are actually
time consuming using the proposed procedure.

In terms of algorithm complexity analysis, the following
considerations can be done. Assuming a graph G(V,E), it is
known that V can be subdivided in two subsets: x in V that is
on a ‘tentacle’, and y in V that is on a ‘cycle’. We named the
nodes in ‘tentacle’ as T, and C to nodes in cycles, since C is
disjoint of T. The graph G can have several ‘tentacles’ and
‘cycles’. Every ‘tentacle’ in T is reduced in time proportional
to its number of nodes. In lower cases, it can be the entire V.
Then, in these cases, we have O(|V|) complexity, where |V|
represents the cardinality of set V.

In the case of ‘cycles’, the lower cases to number of nodes
in C is |C|=|V|, and an exhaustive search is done. This
exhaustive search uses at maximum O(|V|) steps.

Therefore, a typical graph has a combination of these cases,
but if it is a ‘tentacle’ or a ‘cycle’, the algorithm resolves the
match in linear time O(|V|). In the case of combination of both,
and in presence of so many ties, the natural recursion of this
method uses O(|k1|*|k2|…*|kn|), where ∑ki = |V|, n → 0. It says
that this approach runs in super-exponential time in lower
cases, as every NP-complete problem like P-matching.
However, as show in Table IV, these cases are very few from
the universe of Boolean functions up to 5-inputs.

VI. CONCLUSIONS

This work proposes a new way to verify P-matching. This
approach uses a graph representation for Boolean functions. It
divides the universe of functions that have fast P-matching and
the ones that are computation time consuming in this process.
In the case of few tie in the searching of irredundant nodes in
the graph representation, this runs in linear time. In the case of
many ties, it follows the theoretical complexity of the problem,
being super-exponential, but just for few cases in such
universe.

REFERENCES

[1] A. Mishchenko; S. Chatterjee; R. Brayton; W. Wang and T. Kam.
“Technology Mapping with Boolean Matching, Supergates and
Choices,” ERL Technical Report, EECS Dept., UC Berkeley, Mar 2005.

[2] T. Sasao and J. T Butler, “Progress in Applications of Boolean Functions,”
Synthesis Lectures on Digital Circuits and Systems, vol. 4, no. 1, 2009,
pp. 1-153.

[3] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,” In
Proc. Design Automation Conference (DAC), Jun. 1998, pp. 206–211.

[4] Minato,Shin-ichi. “Binary decision diagramns and applications for VLSI
CAD”. Boston:Kluwer Academic, c1996. 141p.

[5] De Micheli,Giovanni. “Sysntehsis and Optimizations of digital circuits”.
McGraw-Hill series in electrical and computer engineering. Eletronics
and VLSI design, 1994.

[6] D. Debnath and T. Sasao, “Efficient computation of canonical form for
Boolean matching in large libraries,” In Proc. Asia and South Pacific
Design Automation Conference (ASP-DAC), 2004, pp. 591-596.

