
Designing a Complete Pipelined Datapath to MIPS ISA:
Learning in Pratice

Francisco Carlos Silva
Junior

Federal University of Piaui
juninho.ufpi@hotmail.com

Ivan Saraiva Silva
Federal University of Piaui

ivan@ufpi.edu.br

Laysson Oliveira Luz
Federal University of Piaui

layssonluz@ufpi.edu.br

Ramon S. Nepomuceno
Federal University of Piaui
ramonn76@gmail.com

ABSTRACT
This paper presents a pipeline implementation of the MIPS
architecture supporting all conflicts and stalls, including some
ones not addressed in the literature. It also presents a per-
formance comparison between a pipelined implementation
and a multicycle one. The conflicts and stalls are carefully
explained, their reasons for occurring, how they are resolved
and what loss in performance they can cause in the pipeline.
An architecture that supports such conflicts is proposed and
implemented in VHDL. An explanation on the ISA MIPS
and how it has evolved through time is given as well. The
results section shows that the pipelined datapath is 3 time
faster than the multi-cycle implementation and requires 50%
less logic elements in an FPGA implementation.

Categories and Subject Descriptors
B.7 [Integrated circuits]: Types and Design Styles—mi-
croprocessor and microcomputers; B.2 [Arithmetic and
logic structure]: Design Styles—pipeline; B.5 [Design]:
[Data-path design]; C.1.1 [Processor architectures]: Sin-
gle data stream architectures—pipeline processors

General Terms
Design, Performance

Keywords
MIPS, Pipelining, Microarchitecture

1. INTRODUCTION
The MIPS microprocessor has a RISC (Reduced Instruction
Set Computer) architecture and is used both as an example
of ISA (Instruction Set Architecture) and as an example of a
microarchitecture in many graduation courses in the whole
world. It is also used commercially in embedded systems
and in video-games, like the PlayStation [7].

In [5], one of the most respected books used in courses of
computer organization and architecture, three versions of
microarchitectures for the implementation of the ISA MIPS
are presented. In all these versions, however, the microarchi-
tecture is conceived with a subset of the instructions in mind.
Such approach, although in most times enough to transmit
the knowledge needed for the discipline, isn’t so when one
desires to give the students the means to implement a data-
path of that complexity. Particularly, the presentation of
a data-path that explores the pipelined execution technique
makes the understanding of its fundamental concepts and
demonstrates the conflicts that may eventually lead to a loss
of performance. Not-withstanding, the presentation given is
not enough for the student to observe all the existent con-
flicts.

This paper presents an implantation of the data-path for the
ISA MIPS using the pipelined execution technique, as well as
every instruction listed in [3]. This implantation handles all
potential conflicts with the instructions, inserting the small-
est possible amount of pipeline stalls. This paper presents
also a development environment which was created so as to
allow students to develop applications using high-level lan-
guages, particularly C, and make simulations or executions
with cycle precision, using the ModelSim tool [1] or proto-
typing boards with reconfigurable devices, in particular we
have used the Altera DE2-115 board.

This microarchitecture was developed in VHDL, and, as
is shown in [5], it uses temporal superposition of the sev-
eral phases of instruction execution, which are namely five
stages: Instruction Fetch (IF); Instruction Decode and Reg-
ister Read (ID); ALU Execution (EX); Data Memory Access
(MEM) and Write Result Back (WB). This implementation
has a greater flow of instructions, allowing the execution of
one instruction per cycle when the pipeline is full. It is ex-
pected, thus, to obtain a better performance when compared
with a mono-cycle data-path, where an instruction is exe-
cuted in a single cycle, and a multi-cycle data-path, where
an instruction is executed in at least three cycles.

In this paper, the implementation was compared in terms of
area and performance with a multi-cycle data-path imple-
mentation, also implemented in VHDL.



2. THE ISA MIPS
The ISA (Instruction Set Architecture) defines the instruc-
tion set supported by a micro-processor or a particular archi-
tecture. The definition normally also contains the instruc-
tion’s format, the register set and its uses, addressing modes,
native data types, memory architecture, interruptions and
exception treatment. The ISA MIPS specifies an instruction
set composed of five categories: Arithmetic; Data Transfer;
Logical; Bitwise Shift; Conditional Branch and Uncondi-
tional Jump. These instructions operate over a set of 32
registers, whose specific uses are also defined by the ISA,
and not all are available to the programmer.

The definition of the ISA MIPS has evolved with time from
the MIPS I ISA to the MIPS V ISA [2]. In order to imple-
ment the microarchitecture presented in this paper, the def-
initions available in [3] were used. These instructions have
three formats, those being R, I and J. The R format speci-
fies instructions that execute operations among registers and
supports three register addresses. The I format specifies
instructions that use immediate operands, including Arith-
metics, such as addi (Add immediate); Logical, such as ori
(Or Immediate); Conditional Branch, such as beq (Branch
on Equal) or Data Transfer, such as lw (Load Word). The
J format specifies instructions of the Unconditional Jump
kind, and, in this implementation, includes solely the in-
structions jal (Jump and Link) and jump. This complete
table with all instructions can be seen in several sources,
such as [3], or [5].

3. THE PROPOSED ARCHITECTURE
In the implementation and pipeline execution of the MIPS
architecture there are some undocumented conflicts. These
conflicts concern the execution of the BEQ (Branch on Equal)
or BNE (Branch not Equal) or the JR (Jump Register) and
another previous instruction that modifies one of the register
to be compared in the BEQ or BNE or the register where the
branching address is stored in the JR. In this paper, BEQ
refers to BEQ and BNE, because these instructions do the
same thing, changing only the comparison, BEQ compares
if is equal and BNE compares if is not equal.

These conflicts exist due to how the register bank is written
on only in the fourth cycle, after the instruction is fetched in
the memory and a later instruction needs the data which is
about to be written. The later will read the register bank in
the second cycle, which means it will read the wrong data,
for that data will only be updated in the fifth execution
cycle. In case this conflict is not handled, this will result
in failure, since the data will be incorrect by the end of the
execution. Table 1 shows what those conflicts are.

In order to handle these conflicts, a forwarding unit was
used, which is an additional hardware that sends the up-
dated data to the instruction that needs it. A hazard de-
tection unit was also added; it verifies the need to insert a
bubble (which then stops, in the next cycle, the PC from be-
ing updated and also stops the pipeline register IF/ID from
being written and writes a nop1 in register ID/EX’s control
signals).

1An instruction that does no operation to change state [5].

3.1 HANDLING BEQ AND JR CONFLICTS
There are three types of conflicts involving BEQ and JR:

• No Stalls: The BEQ or JR instruction is in the IF/ID
pipeline register; The instruction will be executed dur-
ing the next cycle; The data that will be used by the
instruction was generated in previous cycles (previous
instruction), but has not been written in the bank reg-
ister yet.

• One Stall: The BEQ or JR instruction is in the IF/ID
pipeline register; The instruction will be executed dur-
ing the next cycle; The data that will be used by the
instruction (BEQ or JR) will be generated by a previ-
ous instruction in the next clock cycle.

• Two Stalls: The BEQ or JR instruction is in the
IF/ID pipeline register; The instruction will be exe-
cuted during the next cycle; The data that will be
used by the instruction will be generated two clock
cycles after (case where the LOAD is the instruction
preceding BEQ or JR).

The pipeline execution of BEQ and JR instructions are very
similar: (i) They are both jumping instructions; (ii) Their
address calculation is performed in the decoding pipeline
stage; (iii) Regarding other instruction, they have the same
data dependencies. The only difference is that BEQ must
to verify a branch condition which must be true in order to
the jump to be taken. So to handle conflicts involving such
instructions will do the same verification.

In the first case presented above, as the data is already
available, the conflict can be resolved only using the for-
warding unit. It will detect this conflict by checking if one
of the source instruction’s register RS and/or RT (stored
in the IF/ID pipeline register) is the same target registers
used by the instruction currently stored in EX/MEM and/or
MEM/WB pipeline registers. It is also necessary to ver-
ify if the instruction currently stored in EX/MEM pipeline
register is not a LOAD instruction. In the case of data
dependency with a LOAD instruction the data present in
the EX/MEM pipeline register is an address. After such
as verification, a forwarding2 must to be performed taking
the data from the EX/MEM or MEM/WB pipeline register,
thus solving the data conflict.

In the second case, the date has not yet been generated,
an stall is necessary. The data needed to the comparison
of BEQ instruction or to the address calculation of the JR
instruction will be generated in the next clock cycle. The
hazard detection unit verifies the need for a stall by compar-
ing the source register in the IF/ID pipeline register with the
target register in the ID/EX pipeline register. If The instruc-
tion in the D/EX pipeline register is a LOAD instruction a
stall cycle is inserted but the conflict is not yet handled.

In the third case, the instruction preceding BEQ or JR is
a LOAD instruction. Ins this case two stalls are necessary.
The first one is inserted following the verification described
in the previous case. The second stall cycle is inserted when

2Anticipate the data



Table 1: Major Conflicts
Type I or R (except LW, BEQ and BNE) LW

Type R or I

(except for

LW, BEQ and

BNE)

Conflict happens when at least one of the
operands is equal to the target register of
the instruction which precedes it. It is
solved with forwarding, and no bubble.

Conflict happens when the target register
of the LW is equal to one of the operands
of the next instruction and if the LW pre-
cedes this instruction. It is solved with the
insertion of a bubble and forwarding in the
next cycle.

BEQ Conflict happens when the type R or I in-
struction (except for LW and branch) pre-
cedes the BEQ and if the target register is
equal to one of the operands of the BEQ.
It is solved with the insertion of a bubble
and with forwarding in the next cycle.

Conflict happens when the LW preceder
the BEQ and the target register of the LW
is equal to one of the operands of the BEQ.
It is solved with the insertion of two bub-
bles and with forwarding in cycle following
the insertion of the second bubble.

JAL Conflict happens when the target register
of the types R or I instruction (except LW
and jumps) is equal to the operand regis-
ter of the JAL and if the type R instruction
precedes the JAL. It is solved with the in-
sertion of a bubble and with forwarding in
the following cycle.

Conflict happens when the LW precedes
the JAL and if its target register is equal
to JAL’s operand register. It is solved with
the insertion of two bubbles and with for-
warding in the next cycle following the in-
sertion of the second bubble.

the Hazard unit verifies that the instruction in the MEM
pipeline stage is a LOAD instruction and the source register
stored in the IF/ID pipeline register is the same target reg-
ister stored in the EX/MEM pipeline register. Ins this case
the data in the EX/MEM pipeline register is an address. Af-
ter the second stall cycle, the data will be forwarded, thus
solving the data conflict.

4. THE DATA PATH
The proposed data path implementation can be seen in fig-
ure 1. This is a simplified figure, i.e., it hides some parts
that would make the figure too complex and are not really
necessary to understanding the work. For example, how was
handled the conflicts involving BEQ and JR. To handle such
conflicts is necessary adequately select the inputs of mux 3,
mux 4 and mux 5, additionally the forwarding unit and the
hazard unit must to work properly.

As it was seen in the previous section, there are three type
of conflicts involving BEQ and JR. When the first case hap-
pens, the forwarding unit treats the conflicts sending signals
to mux 3 and mux 4 to select the correct inputs, that can be:
(i) Data from ALU (EX/MEM pipeline register); (ii) Data
to bank register (MEM/WB pipeline register) or; (iii) Data
from bank register. Thus, the data pointed by RS and RT
instruction fields will be corrects.

When the second or third case happens the hazard unit is
responsible to insert a pipeline stall. The Hazard unit sends
a signal to mux 5. The mux 5 has as inputs control sig-
nals for a nop operation and control signals for the decoded
instruction. If the Hazard unit detects a conflict, it will se-
lect the nop operation and thus the pipeline stall is inserted.
Therefore, conflicts involving BEQ and JR can be executed
and handled.

5. RESULTS
In order to includes in the work’s goals a performance and
area comparison, a description of a multi-cycle MIPS mi-

croprocessor was developed. The performance analyses was
based in simulation results and the area analyses was based
in synthesis results. The simulation was performed using
the ModelSim [1] tool and the synthesis was performed us-
ing the Quartus II [1] tool. The benchmark application used
in the simulation was a matrix multiplication. It was coded
in C language and compiled with the GNU Cross-COMPILE
[4]. Among others features the GNU Cross-compiler needs
configuration to informs how the memory space must to be
used. It generates a .elf file [8], so a ELF2MIF tool was de-
veloped to obtain a .mif file [6] that was compiled with the
VHDL description.

C =

(
1 2
3 4

)
×

(
1 2
3 4

)

Although it is a simple benchmark application, the assembly
generated by the GNU Cross-COMPILE has 257 instruc-
tions. To the performance analysis goal stated in the paper
this simple application is sufficient enough. The pipeline ex-
ecution took 1038 cycles, 52 of those being nop operations
inserted due conditional branching instruction. Whenever a
conditional branch is taken a stall is inserted. and 48 other
nops because of data conflicts, thus having 100 cycles of
pipeline stalls. This performance for a pipelined execution
is satisfactory, as only about 10% of the total cycles were
bubbles by the end of the execution.

However, these bubbles don’t affect performance so much
when compared to the multi-cycle execution, which took
3171 cycles, over three times the number of cycles of the
pipelined execution. With that, it can be shown the superi-
ority in performance of the pipeline, reducing to less than 1

3
the amount of cycles needed for this execution of a matrix
multiplication.

One should note that the pipeline’s performance can still get
better, since 48 of those bubbles were generated because of



Figure 1: Data Path

Figure 2: C code

Figure 3: Assembly MIPS

the way the Cross-COMPILE generates the assembly. On
for loops in the C code, when compiled and generated the
MIPS assembly, Cross-COMPILE always generates instruc-
tions SLTI preceding a BNEZ, a pseudo-instruction equiv-
alent to the BNE, the difference being it uses zero one of
its operands, thus creating a bubble for every iteration of
that loop. This can be seen in figures 2 and 3. In order to
better the performance, the Cross-Compile could put an in-
dependent instruction between the SLTI and the BEQ, thus
avoiding the bubble.

In order to compare in area, it was considered the num-
ber of logical elements for each microarchitecture implemen-
tation. For the pipeline implementation, 3223 logical ele-
ments were used, which corresponds to 47% of the number of

logical elements used in multi-cycle implementation, which
was 6806. This area result is probably due to implementa-
tion coding style. The multi-cycle implementation uses cus-
tom megafunctions from ALTERA (lpm mult, lpm divide,
lpm csshift). Despite some additional hardware that the
pipeline requires to handle conflicts, the number of logical
components was smaller than the one on the multi-cycle.
That shows that not only is it efficient, the pipeline imple-
mentation also needs less space on a chip.

6. REFERENCES
[1] Altera. quartus ii handbook version 13.1 - volume 3.

http://www.altera.com/literature/hb/qts/qts_

qii5v3.pdf.

[2] Mips technologies inc. mipsR© architecture for
programmers volume i-a: Introduction to the mips32
architecture. Sept. 9, 2013.

[3] Wikipedia mips architecture.
en.wikipedia.org/wiki/MIPS_architecture.
Accessed: 19/03/2014.

[4] I. Cpmware. Building a gnu gcc cross compile.
www.cpmware.com/Docs/BuildingGcc.pdf. Accessed:
31/07/2014.

[5] D. A. Patterson and J. L. Henessy. Computer
organization and design the hardware/software
interface. Morgan Kaufmann, Oxford, USA, 5th
edition, 2014.

[6] Quartus. Memory inicialization file.
http://quartushelp.altera.com/13.0/

mergedProjects/reference/glossary/def_mif.htm.
Accessed: 31/07/2014.

[7] A. S. R. J. Sagar Bhavsa, Akhil Rao. A 16-bit mips
based instruction set architecture for risc processor.
International Journal of Scientific and Research
Publications (IJSRP), Volume 3, 2013.

[8] E. Youngdale. The elf object file format: Introduction.
Linux Journal, 1995.

 http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
 http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
en.wikipedia.org/wiki/MIPS_architecture
www.cpmware.com/Docs/BuildingGcc.pdf
http://quartushelp.altera.com/13.0/mergedProjects/reference/glossary/def_mif.htm
http://quartushelp.altera.com/13.0/mergedProjects/reference/glossary/def_mif.htm

	INTRODUCTION
	THE ISA MIPS
	THE PROPOSED ARCHITECTURE
	HANDLING BEQ AND JR CONFLICTS

	The data path
	RESULTS
	References

