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ABSTRACT 

This work addresses the digital baseband predistortion (DPD) of 

radio-frequency power amplifiers (RFPAs) for wireless 

communication systems. To compensate for the strongly 

nonlinear and dynamic behaviors observed in RFPAs having a 

Doherty architecture, in here the DPD is modeled by a radial 

basis function neural network (RBFNN). Special attention is 

given to investigate the accuracy of a fixed-point RBFNN DPD 

as a function of the number of bits used for the representation of 

the binary numbers. Computer simulations show that, when 

applied to linearize a Doherty PA behavioral model, an effective 

fixed-point RBFNN DPD requires at least 25 neurons in the 

hidden layer and a minimum number of 22 bits for representing 

the binary numbers. Indeed, if the minimal setup is used, the 

designed fixed-point DPD improves the ACPR metric at the PA 

output by 6.6 dB.   
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1. INTRODUCTION 
Wireless communication standards for 4G services establish 

rigorous requirements on linearity [1]. In fact, the high data rates 

offered by 4G services can only be achieved, in the reduced 

available bandwidth, if the transmitted RF carrier is modulated 

by an envelope signal having variable amplitude and with a high 

ratio between peak and average amplitudes. In this scenario of 

variable amplitudes, linearity is essential to avoid interference 

between neighbor users [1]. Wireless communication systems 

must also provide acceptable power efficiency. Indeed, it is 

highly desirable to increase the autonomy of the battery present 

in handsets, as well as to reduce the costs associated with heat 

dissipation in base-stations [2].  

From a microelectronic designer point-of-view, linearity and 

efficiency are conflicting requirements [2]. This trade-off is 

accentuated for radio-frequency power amplifier (RFPA) 

designers. Actually, the RFPAs present at the transmitter chain 

are based on semiconductor transistors that are subject to an 

intrinsically trade-off between linearity and efficiency [3]. In 

other words, traditional RFPAs operating in class A, B or AB can 

only provide acceptable efficiencies when driven at high power 

levels, in where non negligible nonlinear distortions are 

observed.  

To improve the power efficiency without deteriorating the 

linearity, the design of RFPAs for 4G cellular systems are based 

on the combination of two strategies. In one hand, the RF design 

uses non-trivial architectures targeting to improve the efficiency. 

In the other hand, a linearization scheme is added to the 

transmitter chain.   

One example of efficiency enhancement technique for RFPA 

design is the Doherty architecture [3]. In the Doherty 

architecture, an auxiliary transistor is associated to the main 

transistor. While the main transistor is always on, the auxiliary 

transistor is on only at average to high input power levels. Figure 

1 shows an example of a Doherty RFPA transfer characteristic. 

At low input levels, the output increases linearly with the input. 

As the input level is increased, a first reduction in gain is 

observed. At this threshold level, two almost simultaneous 

phenomena are observed:  the gain of the main amplifier starts to 

compress and the auxiliary transistor turns on. As the input level 

is further increased, a second gain compression is observed, now 

due to the compression of the auxiliary transistor. Beyond that 

point, both main and auxiliary transistors are compressed and the 

RFPA is close to its saturation level. 
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Figure 1. Doherty RFPA transfer characteristic. 

 

Turning the attention to linearization, digital baseband 

predistortion (DPD) is a cost-effective solution [4]. The DPD is a 



block connected in cascade with the RFPA, whose purpose is to 

distort the signal prior to its amplification by the RFPA, so that 

the signal at the RFPA output is a linear version of the input 

signal. A fundamental step in the design of a DPD scheme is the 

choice of a nonlinear dynamic model for the DPD. In literature, 

Volterra (polynomial) models and neural networks (NNs) are two 

common alternatives [5]. For the specific case of Doherty PAs, 

NN is the preferable choice, once the number of parameters in 

the polynomial models increases very fast with the polynomial 

order truncation. Indeed, a very high polynomial order truncation 

is necessary to accurately model strongly nonlinear behaviors like 

the Doherty transfer characteristic shown in Figure 1. More 

specifically, in this work the DPD model is given by a NN known 

in literature as radial basis function neural network (RBFNN) 

[6]. 

The contribution of this paper is to investigate an important 

practical aspect related to the implementation of a fixed-point 

RBFNN DPD, namely its accuracy as a function of the number of 

bits used for the representation of the binary numbers. Moreover, 

the number of neurons in the hidden layer of the RBFNN DPD 

will be varied in order to estimate its effect on the accuracy of 

the fixed-point DPD. 

This work is organized as follows. Section 2 describes the 

RBFNN DPD. Section 3 assesses the accuracy of the designed 

fixed-point RBFNN DPD based on numerical simulations 

performed on a Doherty RFPA behavioral model. At the end, 

Section 4 summarizes the conclusions of this work. 

2. RBFNN DIGITAL BASEBAND 

PREDISTORTER 
The DPD scheme is based on a cascade connection of the pre-

distorter (PD) followed by a power amplifier (PA), as shown in 

Figure 2.  If the PD transfer characteristic has an inverse 

response in comparison with the PD transfer characteristic, then 

the signal at the cascade output is a linear version of the signal 

applied to the cascade input [4], even though the PA is operating 

at strong nonlinear regimes.  
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Figure 2. Cascade connection of a PD followed by a PA. 

 

A crucial step in the design of a DPD system is the selection of 

the DPD topology. In this work, as previously discussed in 

Section 1, it is chosen the RBFNN architecture [6]. Figure 3 

shows the block diagram of an RBFNN having E inputs, R 

neurons in the hidden layer and S outputs. 

In an RBFNN, associated to each one of the R hidden neurons, E 

parameters called centers (c) are defined. The difference between 

each applied input and its respective center parameter is 

performed. Then, the square roots of the sum of the squares of 

these differences are taken and the obtained results are further 

multiplied by input bias (b
I
) parameters, in order to obtain the 

signals identified as u in Figure 3. The signals u are applied to 

activation functions (S), typically Gaussian functions. The O 

output signals are given by the linear combination of the signals z 

at the output of the activation functions, having multiplying 

coefficients designed as (h), and added to output bias (bO) 

parameters.  
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Figure 3. Block diagram of an RBF neural network. 

 

In order to compensate for the memory effects observed at 

RFPAs, the instantaneous (n) complex-valued envelope at the 

RFPA output yɶ must be a function of the instantaneous (n), as 

well as past samples (n-M) up to the memory length M, of the 

complex-valued envelope at the RFPA input xɶ . According to 

[7], choosing M = 1 and considering that exp( )x a jθ=ɶ  and 

exp( ( ))y b j ϕ θ= +ɶ , an RBFNN dealing with just real-valued 

signals has 4 inputs and 2 outputs, as shown in Figure 4.  
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Figure 4. Block diagram of an RBFNN DPD having M = 1. 

 

In order to extract the RBFNN parameters c, bI, h and bO, the 

indirect learning architecture was used [8]. In this algorithm, as 

shown in Figure 5, it is identified the parameters of a post-

distorter (PoD), e.g. an inverse system that is also connected in 

cascade with the RFPA, put placed after it. Indeed, the 

parameters of the DPD are just copies of the identified PoD 

parameters. 

Attention is now given to describe an important aspect related to 

the hardware implementation of the RBFNN DPD shown in 

Figure 4, namely its accuracy. A first choice that must be done 

concerns the representation for the binary numbers. While the 

RBFNN training was done in double-precision floating-point 

representation, the hardware implementation uses fixed-point 

arithmetic, in which negative numbers are represented by 2’s 



complement. To convert the floating-point double-precision data 

(excitation signal and network parameters), to fixed-point data, a 

routine was created in MATLAB software [9].  
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Figure 5. Block diagram of the indirect learning. 

 

According to Figure 3, the RBFNN has R activation functions 

designated by S, all of them having a nonlinear Gaussian 

behavior. Besides, a square root operator is previously performed 

as a step to obtain the signals u applied to the S functions. In the 

fixed-point arithmetic, nonlinear one-dimensional (1D) operators 

are implemented by Look-Up-Tables (LUTs). Therefore, to 

reduce the computational complexity of the fixed-point RBFNN 

DPD, it suffices to use only R LUTs. In fact, it is enough to use 

one LUT for each hidden neuron if the LUT is able to take into 

account the behavior of a cascade between a square root operator 

and a Gaussian operator. 

3. COMPUTER SIMULATIONS 
The accuracy of the fixed-point RBFNN DPD described in 

Section 2 is now assessed based on computer simulations 

performed on the Matlab software. 

The device-under-test (DUT) is a PA behavioral model of a 

circuit-equivalent GaN HEMT Doherty RFPA, excited by a 

carrier frequency of 2.14 GHz and modulated by a LTE OFDMA 

envelope signal having a bandwidth of 10 MHz. The RBFNN 

architecture of Figure 4 (with R = 20) was also employed for the 

RFPA behavioral modeling.  

The metric adjacent channel power ratio (ACPR) is used here to 

quantity the accuracy of a DPD. ACPR is given by the power 

ratios between adjacent and main channels. The ACPR reported 

here consider a 10 MHz bandwidth for all channels and also a 10 

MHz separation between adjacent and main channels. 

Specifically, the ACPR metric at the PA output is computed for 

the cases with and without DPD, in a scenario where the RFPA 

average output powers are the same.  

Figure 6 shows the power spectral densities (PSDs) at the RFPA 

output when the number of neurons in the hidden layer is set to R 

= 25 and the number of bits used for the representation of the 

binary numbers is set to 22. Observe that in presence of the 

DPD, the spectral regrowth is significantly reduced, which means 

that, in presence of the DPD, the RFPA output signal is more 

linear in comparison with the case without DPD. This 

improvement is quantified by an ACPR reduction of 6.6 dB 

(from -26.9 dB to -33.5 dB), clearly validating the designed DPD 

as an effective linearizator for the DUT. 
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Figure 6. Power Spectral Density, when R = 25 and the 

number of bits used for the representation of the binary 

numbers is set to 22. 

 

To further validate the designed DPD, in Figure 7 is shown the 

normalized amplitude of the PA output signal as a function of the 

normalized amplitude of the OFDMA excitation signal (the AM-

AM plot). Observe that a much more linear curve is obtained in 

the presence of the DPD. 
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Figure 7. AM-AM plot of unlinearized and linearized PA, 

when R = 25 and the number of bits used for the 

representation of the binary numbers is set to 22. 

 

At this moment, it will be investigated the impact on the 

accuracy of the fixed-point RBFNN, if the number of bits used 

for the representation of the binary numbers is reduced. Figure 8 

shows the PSDs at the RFPA output when the number of neurons 

in the hidden layer is kept equal to R = 25, but the number of bits 

used for the representation of the binary numbers is reduced to 

18. Observe that in this case, the accuracy of the RBFNN is 

much worse in comparison with the DPD shown in Figure 6 

where the number of bits used for the representation of the 

binary numbers was 22. Therefore, an effective fixed-point 

RBFNN DPD for the DUT must represent the binary numbers 

using at least 22 bits 
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Figure 8. Power Spectral Density, when R = 25 and the 

number of bits used for the representation of the binary 

numbers is set to 18. 

 

Finally, it will be investigated the impact of varying the number 

of neurons in the hidden layer on the accuracy of the fixed-point 

RBFNN. Figure 9 shows the PSDs at the RFPA output when the 

number of neurons in the hidden layer is set to R = 20 and the 

number of bits used for the representation of the binary numbers 

is kept equal to 22. Observe that, in this case, the accuracy of the 

RBFNN is much worse in comparison with the DPD shown in 

Figure 6 where the number of neurons in the hidden layer was 

25. Therefore, an effective fixed-point RBFNN DPD for the DUT 

must have at least 25 neurons in the hidden layer. 
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Figure 9. Power Spectral Density, when R = 20 and the 

number of bits used for the representation of the binary 

numbers is set to 22. 

4. CONCLUSIONS 
This work has addressed the fixed-point implementation of a 

digital baseband predistortion having a radial basis function 

neural network model. The accuracy of fixed-point RBFNN 

DPDs was investigated based on computer simulations 

performed on the Matlab software, having a PA behavioral model 

as the device-under-test. It was reported that an accurate fixed-

point RBFNN DPD must have 25 neurons in the hidden layer 

and the binary numbers must be represented in fixed-point 

arithmetic having 22 bits. Indeed, 6.6 dB improvements in ACPR 

metric were achieved by the inclusion of the fixed-point RBFNN 

DPD, in comparison with the case without DPD. Moreover, 

drastically deteriorations on the DPD performances were 

observed, if either the number of neurons in the hidden layer or 

the number of bits for representing the binary numbers is 

reduced.  
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